The Laser Qualification / Verification Effort

Laser Qualification **Critical Technologies Overview**

ccelerated Life est - Operating Stressed Spare **Component Level** Electro-Optic Decision to proceed Laser-Induced Damage Threshold => Polarizer Store as Witness Samples, Prenare Full Evaluation **Opto-electronics** => LDA, PIN **Radiation Hardness** => LDA, Laser rod, RTP Contamination / Outgassing => Coatings Page 1 of 22 **EVALUATION TEST PROGRAMME GUIDELINES** FOR LASER DIODE MODULES **Assembly Level** Long-term Laser Operation in Vacuum ESCC Basic Specification No. 23201 Hermetic sealing before and after irradiatior Nd:YAG 70,0 Q-switched Electro-magnetic Compatibility ... conducted emissions 60,0 energy [mJ] 50,0 Partial discharge 40,0 30,0 273270 (Ref)-Pulse energy control 273278 20.0 Laser 273279 10,0 Optical alignment stability, pointing 0.0

20

30

40

50

LD current [A]

Se

Total required

80

70

60

Divergence

24 April 2015

32

Unclassified

Laser Qualification Break-Down to Component Level: Test programme included > 1.500 test items

Optics:

Lenses, polarizers, waveplates, mirrors, dichroics, window Nd:YAG laser rod Start pulse fibre set Pump light diffuser Variable reflection coating Materials delta qualification

Optoelectronics:

Laser Diode Arrays RTP Pockels' cell Photodiode

Electronics:

Fast MOSFETs HV electronic parts Hermetic connectors Environmental test acc. to MIL-C-48497A Laser Induced Damage Threshold (LIDT) Materials delta qualification Gamma and proton irradiation

. . .

The Polarizer in the laser oscillator faces worst LIDT conditions

Polarizer is located in resonator leg which is facing twice the intensity

- Nominal intensity ~2,7 J/cm²
- Qualification target value
 15 J/cm²

Polarizer comes with largest layer stack – more layers, more sensitivity

Layer stack thickness 5.8 μm

Coating options are limited for high LIDT

- Ebeam coating achieved required LIDT, but IBS did not
- other coating suppliers tried but LIDT improved only marginal
- Decision to accept ebeam coating
 - Ebeam coating density and spectra shift with humidity
 - Laser alignment performed with reduced functionality
 - 1st acceptance test with LHB provisionally sealed
 - Remove all H₂O during LHB Bake-Out

[1] C. Scurlock, Laser Risk Reduction Program, NASA GSFC [2] C. J. Stolz, Thin Film Femtosecond Laser Damage Competition

Pump Laser Diode Arrays (LDA)

LDA Qualification

LDA Screening Test Procedure ... as applicable for flight items

Laser Qualification Component Level Tests

Laser-Induced Damage Threshold of coatings

Laser Diode Arrays (LDA)

Radiation-Hardness (Laser and Q switch crystals, LDA) Long-term Laser Operation in Vacuum

Burn-In after assembly to flight hardware

LDA Qualification Tests **ESTEC** Test Program

LDA Qualification Tests at ESTEC: Careful Inspection, Shock Tests,

LDA Burn-In after Integration into LHB housing

LDA Burn-In after Integration into LHB housing *continued*

Figure 4: Pulse Energy data (average iaw Figure 1) with standard deviations indicated as error bars

BELA Laser Assembly, Integration and Test

BELA Laser FM - AIV Sequence

LHB Base Unit

BELA Laser Testing during Assembly & Integration Sequence

Caustics test reveals any shift in divergence

Energy Monitor data recorded for all main / red combinations

Laser Qualification: Boresight & Divergence Test Set-up

24 April 2015

Laser Qualification, Assembly Level Tests

Laser Verification Tests: Boresight & Divergence

Boresight Mesurement

EM		Main			Redundant		
	LHB in	terface	Voctor	LHB interface		Vector	
	Y [µrad]	Z [µrad]	VECIOI	Y [µrad]	Z [µrad]	VECIOI	
Before acceptance Vib.	0	0	0	0	0	0	
After acceptance Vib.	19	-13	23	1	-6	6	
#1 Op_High	25	-19	32	13	-3	14	
#1 Op_Low	33	22	40	-19	-7	20	
#2 Op_High	42	-13	44	14	8	16	
#2 Op_Low	24	20	31	-13	-4	14	
#3 Op_High	37	-20	42	12	9	15	
#3 Op_Low	26	26	36	-16	-3	16	
#4 Op_High	41	-21	46	10	7	12	
#4 Op_Low	22	23	32	-12	-4	13	
ambient after TV	37	-5	37	9	6	11	
after EMC	35	2	35	14	11	18	

1) Boresight Mesurement (Avg 100)

	X Main	Y Main	X Red	Y Red
	[px]	[px]	[px]	[px]
R1	453,0	638,0	453,0	638,0
R2	439,0	739,0	439,0	739,0
R3	446,0	739,0	446,0	739,0
Beam	463,0	340,0	477,0	387,0
ORP	-	-	-	-

2) Divergence Mesurement (Avg 100)

	Eff. Dia	Eff. Dia	
	[px]	[µrad]	
Main	25,4	43	
Red	27,8	47	

Laser Verification Tests – Functional Parameters

	Operation mode 10Hz						Hz
egister	Minimum Target	Maximum Target	Date	15.07.2013	23.07.2013	20.08.2013	30.08.2013
Ř	Value	Value	Name	21°C	21°C	55°C	<mark>56°(</mark>
1	4053	4061	STATUS	4061	4061	4061	406
111	0	15	REF_1	5	5	6	5
112	492	512	REF_2	510	511	509	51(
113	650	1050	HV_LDD_BS	860	853	861	86
114	0	<#113 - 100	HV_LDD_AS	621	600	726	704
115	0	40	ENERGY_BS	7	7	5	8
116	50	1023	ENERGY_AS	474	506	473	503
117	570	820	TEMP_LEU_LAS1	707	708	788	78
118	570	820	TEMP_LHB_LAS1	711	711	783	77
119	570	820	TEMP_LEU_LAS2	707	710	790	78
120	570	820	TEMP_LHB_LAS2	711	705	763	778
121	460	540	ENERGY_AS_C	470	507	498	48
122	570	820	TEMP_LEU_LAS1_C	718	719	800	79
123	570	820	TEMP_LHB_LAS1_C	711	717	779	76
124	570	820	TEMP_LEU_LAS2_C	717	719	800	79
125	570	820	TEMP_LHB_LAS2_C	715	714	780	77:
141	4095	4095	BIT	4095	4095	4095	409

El.-magn. Compatibility -Key drivers

Parameter	Value	To consider
LDA drive current	100 A	Shifting ground, magnetic fields
PCD switching time	10 ns	Spikes during signal acquisition
High voltages	3 kV	Electrical break-down

1. LDA drive current

- "Laser system" is broken down to LEU as a unit and LHB as a rather minor assembly
- Laser diode driver (LDD) is situated in LEU far from "Laser head" (LHB)
- Strong electrical current runs long way through payload
- For flight hardware, joint EMC testing of the whole transmitter was performed

2. PCD switching time

- PCD is situated <u>close to Q switch</u> in LHB compartment
- PCD spikes affect energy monitor signal
- PCD power is provided through LDD which is located in LEU
- Laser system's EMI filter is located in LEU
- 3. High voltages for Q switching
 - Distances of several millimeters needed for safe electrical insulation
 - Many items involved in switching chain (MOSFET cascade)
 - Test without conformal coating
 - Detailed partial discharge tests

Laser Verification Tests -Life Model Test Results

Laser Pulse Energy Lifetime testing

BELA Conclusions

The qualified BELA Laser is based on the reliable and industrialized laser range finders manufactured by Airbus DS Optronics.

A number of significant learnings have been made during development and verification, in particular with the qualification model.

Qualification test records have established the manufacturers confidence that all critical design areas have been addressed successfully.

Adoption of an unstable resonator design proved successful and extendable to other high-power applications.

ESA's JUICE Mission -The Ganymede Laser Altimeter

Mission Description

Key mission drivers and technology challenges	Radiation Power budget Mass budget
Responsibilities	ESA: manufacturing, launch, operations of the spacecraft and data archiving PI Teams: science payload provision, operations, and data analysis.

Der Satellit "Jupiter Icy Moons Explorer" (JUICE)

Short name	Instrument Name		
JANUS	Jovis, Amorum ac Natorum Undique Scrutator, camera system		
MAJIS	Moons and Jupiter Imaging Spectrometer		
UVS	UV Imaging Spectrograph		
SWI	Sub-millimetre Wave Instrument		
GALA	Ganymede Laser Altimeter		
RIME	Radar for Icy Moons Exploration		
J-MAG	Magnetometer for JUICE		
PEP	Particle Environment Package		
RPWI	Radio & Plasma Wave Investigation		
3GM	Gravity & Geophysics of Jupiter and Galilean Moons		
PRIDE	Planetary Radio Interferometer & Doppler Experiment		

Unclassified

The GALA transmitter unit is currently under development in Oberkochen

Vielen Dank für Ihre Aufmerksamkeit.

. .

