

Universität Stuttgart

The MICADO derotator and its test stand at MPIA

S. Barboza, J.-U. Pott, F. Müller, R.-R. Rohloff, N. Muench, R. Hofferbert, L. Mohr, F. Briegel, J. F. Wagner, precision mechanical workshop MPIA

> Astro Tech Talk MPIA, 28 October 2016

Outline

- European Extremely Large Telescope (E-ELT)
- MICADO
- Why a Derotator is needed
- The Derotator concept
- Test stand and the integration process
- Integration status and missing components
- Goals of the experiment (kick-off)
- Planning for the test campaign
- Implementation schedule of the test campaign
- Tests already performed

Location

Location

Location

Atacama Desert, Chile

• Green light for E-ELT construction "Phase 1"

(see organization release eso1440 - The Messenger 158, December 2014)

• In May 2016 ESO signed the contract for E-ELT Dome and Telescope Structure (see organization release eso1617)

• Instruments and adaptive optics modules

Name	Instrument Type	Wavelength Range	Field of View		
CODEX	High Resolution, High Stability Visual Spectrograph	0.37 – 0.71µm	0.82"		
EAGLE	AO-assisted Multi-integral Field NIR Spectrometer	0.8 – 2.45µm	IFU: 1.65" x 1.65"		
EPICS	Planet Imager, Spectrograph and Imaging Polarimeter with Extreme Adaptive Optics	0.6 – 1.65µm	IFU: 0.8" x 0.8"		
HARMONI	Single Field Integral-field Spectrograph	0.47 – 2.45µm	10" x 5" with the coarsest pixel scale		
METIS	Mid-infrared Imager and Spectrograph with AO	2.9 – 14µm	17.6" x 17.6" (imager)		
MICADO	Imager and Slit Spectrograph	0.8 – 2.5µm	up to 53''		
OPTIMOS- DIORAMAS	Wide-Field Imager & Low-Medium Resolution Slit Spectrograph	0.37 – 1.6µm	6.78' x 6.78'		
OPTIMOS-EVE	Optical-NIR Fibre-based MOS	0.37 – 1.7µm	Large field IFU: 7.8" x 13.5"		
SIMPLE	Cross-dispersed Echelle Spectrograph, Long-slit Option	0.8 – 2.5µm	up to ~4" patrol field for slit viewer		
ATLAS	Laser Tomography AO Module	0.35 – 13.5µm	60"		
MAORY	Multi Conjugate AO Module	0.8 – 2.4µm	2'		

MICADO Kick-Off

Image of the consortium taken at the MICADO kick-off meeting in Vienna, 7 October 2015

- Preliminary Design Review, October 2018
- Final Design Review, 2020
- Preliminary Acceptance Europe, 2023
- First Light, 2024

MICADO official First Light date prediction contest

1/1	L/2024	1/1/	2025	1/1/2	026	1/1/2027	1/1/2028	1/1/2029	1/1/2	2030	1/1/2031
Average	10					2/1/	72027				
Elorian Karbar		10	6/2024			2/14	1/202/				
Pohart Groimal	2	10,	12/5/2024								
Floring Long Bard	2	-	12/5/2024	10 10005							
Fiorian Lang-bardi			5/	18/2025	25						
Norbert Przybilla				//21/20	25		MICADO Firs	st Light date Pre	edictions man	de during th	ne
Marco Haiuse				8/19/2	2025		Phase B Kick	-Off meeting in	Vienna on 2	015-10-6.	
Michael Mach				10/2	2/2025						
Suzie Ramsay	E			10,	/25/2025		Classet and	istion wine 1 h	attle of bubb	huudee	
Werner Zeilinger	-	_		10,	/26/2025		closest pred	ICCION WINS I DO		ly wine.	
Jörg Uwe Pott		_		1	1/23/2025		First light is l	MICADO on the	E-ELT on sky	(without N	MAORY).
Gabriele				_	12/31/2029	5	UT time of e	nd of first expo	sure / detect	tor readout	
Michael Wegner	1	_			2/4/2026			and the second second second second			
Wolfgang Kausch		_		_	2/10/202	6	A	distion. Valenti	ince day 202	-	
Achim Hess		_		_	2/13/202	6	Average pre	diction: valenti	nes day 202	/	
Yann Clenet		_		_	= 2/18/202	26	Standard de	viation is 513 d	ays		
Martin Leitzinger		_	-	_	3/3/202	6					
Ralf-Rainer Rohloff		_		_		8/1/2026	Good Luck F	vervonel			
Martin	-	_		_		8/27/2026	Ramon Nava	recipence			
Eline Tolstov		_		-		9/7/2026	Kaliloli Nava	110		4 22	
Pierre Baudoz		_				9/20/2026					
Josef Schubert						10/1/2026					
Jörg Schlichter	-			_		11/2/2020	5				
Mike Hartl	-					1/9/20	127			U	
Gils Verdoes Kleiin	-					2/1/	1/2027		MICA	DO	
Veronica						2/14	/12/2027		MICA	50	
Eckhard Sturm							5/17/2027				
Paiper Koehler	1						6/4/2027				
Rainer Kuerner							0/4/2027				
Koland Wagher							0/1/2027				
Fiaraid Nickias							9/9/2027	-			
Santiago barboza							10/6/202	./			
Ric Davies							11///20	J27			
Ramon Navarro	1						12/6/	2027			
Mathieu		_					2/1	1/2028			
Oliver czoske				_				3/26/2028			
Heiko Anwand	0			_				7/26/2028			
Gerard Zins	-			1				10/1/20	28		
Philippe Feautrier								10/12/2	2028		
Peter Bizenberger								2	/1/2029		
Zoltan Hubert									5/30/2029		
Friedrich	6	_							8/1/20	29	
Tristan Buey										12/2/2029	
Florian Briegel	-			_						4/1/20	30

MICADO

• Located in the straight focal station on the Nasmyth platform

MICADO

- The Multi-AO Imaging CAmera for Deep Observations
- Key Capabilities
 - Sensitivity and resolution
 - Precision astrometry
 - Spectroscopy
 - Simple and robust
- The instrument design has been optimized for MCAO (MAORY)
- Large 53 arcsec field of view at the diffraction limit of the E-ELT
- The early operational phase will used SCAO (if MAORY is no ready)

MICADO- MAORY

Why a Derotator is needed?

• Field rotation on telescopes with Alt-Azimuth mounts

Why a Derotator is needed?

• Field rotation on telescopes with Alt-Azimuth mounts

Why a Derotator is needed?

• Field rotation on telescopes with Alt-Azimuth mounts

The Derotator

- Bearing, drivers, motors, encoders and mechanical interfaces
- High precision requirements
- How to achieve (if possible) 1 arcsec of rotational positioning accuracy ?

Parameter	Value				
Inner diameter	> 2100 mm				
Thickness	≤ 230 mm				
Moving mass	≤4 ton				
Axial runout	< 50 µm				
Radial runout	< 100 µm				
Wobble	< 10 arcsec				
Operating temperature	−10°C to 20°C				
Rotation speed	360° in ≤ 2 min				
Relative angular positioning accuracy	<10 arcsec (rms)				

Derotator preliminary requirements

- Possible bearing technologies
 - Slewing bearings
 - Hydrostatic bearings
 - Air bearings
 - Magnetic bearings

How accurate must be the Derotator?

MICADO

- What does relative angular positioning accuracy mean?
- How much is 10 arcsec (rms)?

- Input = 90° → Output = 90.8° or 89.2° (measured position)
 Absolute accuracy < 1° (Input Output)
- 1 arcsec = 1°/3600 = 0.000287° → 10 arcsec = 0.00278°

LINC-NIRVANA GWS

- Bearing Ø 852 mm
- System working in open loop

The Derotator Concept

- Using Rhothe Erde Ball Bearing 83244820 (Gear Module 6)
 - Radial/Axial runout < 30 μm (requirement 100 μm / 50 μm)
- Based on a three points interface to the instrument support structure

MICADO Derotator concept (support structure and motors not shown)

The Derotator Concept

MICADO Derotator concept (support structure and motors not shown)

End to End Simulation

• From a simple to a complex end to end model

MICADO Mechanical System

Bearing Friction

- The LuGre Model (Olson, 1996)
 - The model is related to the bristle interpretation of friction
 - Friction is modelled as the average deflection force of the bristles (elastic springs)

Bristle model and deflection

- Parameters which have influence on the friction
 - Rolling friction coefficient
 - The rolling elements
 - Cages or spacers
 - Seals
 - Load distribution
 - The out-of-flatness of the support structure
 - The grease filling
 - The type of grease
 - The lubrication of the lip seals
 - The seal preload
 - The variation in the bearing's clearance resulting from installation

Test Stand Kick-off Meeting (February 2016)

• Design of the experiment using an standard bearing

Parameter	Test Stand Bearing	Derotator Bearing		
Race way diameter	1094 mm	2290 mm		
Axial runout	≤ 300 µm	≤ 30 µm		
Radial runout	≤ 260 µm	≤ 30 µm		
Gear module	8 mm	6 mm		
Number of teeth	148	403		
Starting friction torque (0 rpm)	1000 Nm	1800 Nm		
Running friction torque (1 rpm)	900 Nm	1350 Nm		

- Goals of the experiment
 - Learn about the implementation and performance of the tape encoder
 - Proof the alignment procedure between the interface flange and the bearing
 - Test backlash suppression system
 - Understand the effects of the friction over the positioning accuracy
 - Calibrate the parameters of the end-to-end model
 - Compare the results of the model with the performance of the real prototype
 - Validate the FEM of the bearing

Test Stand Components and subsystems

Drive system

- Servo motor Beckhoff AM8532D (rated torque: 2.2 Nm)
- Harmonic Drive (gear ratio: 160)
- Pinion with 12 teeth (gear ration: 12.33)

Positioning measurement system

- Integrated stator coupling absolute angle encoder (accuracy ±2.5")
- Steel scale tape incremental angle encoder (accuracy ± 1.9") plus Scanning head

Heidenhain RCN 2000 Series

Heidenhain ERA 8000 Series

Image source: Heidenhain catalog

Tape Incremental Encoder and Scanning Head

Encoders of the positioning measurement system

Test stand support structure and interface plate

Encoder ring delivered by KINKELE, alignment pins and motor brackets by MPIA work shop Barboza, et al. MPIA, 28.10.2016

Standard Ø1.2 m bearing delivered by Rothe Erde

Bearing installed on the support structure

Status before the summer break...

Manual drive unit and encoder scanning head support

Drive unit test setup and manual drive unit with Harmonic Drive

Friction simulator

• The real motor @ 1800 rpm / bearing @ 0.9 rpm / 3 tons

Motor and electronic cabinet

Integration status and missing components

- Procurement and manufacturing "75%" (99%) completed
- Assembly and integration "75%" (90%) completed

Barboza, et al. MPIA, 28.10.2016 Test stand CAD model (Kick of meeting February 2016) and real hardware

Performance of the delivered bearing

Parameter	Offered Bearing	Delivered Bearing		
Race way diameter	1094 mm	1094 mm		
Axial runout	≤ 300 µm	≤ 50 µm		
Radial runout	≤ 260 µm	≤ 60 µm		
Wobble (calculated)	≤ 113 arcsec	≤ 23 arcsec		
Starting friction torque (without mass)	780 Nm	300 Nm		
Starting friction torque (with mass)	1000 Nm	730 Nm		

Image source: Rothe Erde

Measurement protocol performed by Rothe Erde

Planning for the test campaign

- Test alignment procedure
 - Repeatability of the radial runout of the bearing
 - Alignment of the interface plate and the encoder ring to the bearing axis
 - Repeatability of the alignment system (with mass)
- Measurement of the torque at the motor axis
 - Without mass
 - With mass (2990 Kg)
 - With mass and simulated **constant** friction of the real bearing (worst case)
- Validate the FEM of the bearing
 - Measurement of the differential deformation on key points with load and without load
- Test acceleration and speed
 - Time to rotate 360° with mass and friction_

Test stand

Motor required

(not optimized?)

40

Planning for the test campaign

- Test the angular positioning accuracy (open and closed loop)
 - Without mass
 - With mass (2990 Kg)
 - With mass and simulated friction of the real bearing
- Test of the backlash suppression system
 - Define torque values between the pinions
 - Control system optimization
 - Measurement of the positioning accuracy over a trajectory with change of direction
- Calibrate parameters of the end-to-end model
 - Parameter identification of the drive unit
 - Parameter identification of the friction model
- Performance of the real prototype vs end-to-end model
 - Drive unit end-to-end simulation
 - Derotator test stand end-to-end simulation

Implementation schedule of the test campaign

- What have to be tested before the SRR?
- What can be done after the SRR?

Items	October	November	December	January	February	March	April	Мау
Software development	?							
Test alignment procedure								
Measurement of the torque at the motor axis								
Test acceleration and speed								
Validate the FEM of the bearing								
Implementation of the encoder system						•		
Test the angular positioning accuracy (open and closed loop)								
Implementation of the friction system								
Implementation with 2 motors								\checkmark
Test of the backlash suppression system								\rightarrow
Calibrate parameters of the end-to-end model								\rightarrow

Tests already performed

Alignment procedure

Tests already performed

• Alignment procedure of the encoder ring (radial runout < 0,05 mm)

Encoder ring

For inspiration...

