Paranal/VLT Adaptive Optics Instruments 2016+

NAOS - CONICA [Nasmyth Adaptive Optics System - Coudé Near-Infrared Camera]
Focal Reducer Spectrograph (#2)
K-band Multi-Object Spectrograph
Fibre Large Area Multi-Element Spectrograph
Wide range [UV - H-band] point source spectrograph
Uv Visual Echelle Spectrograph
Spectro-Polarimetric High-contrast Exoplanet Research
VLT Imager and Spectrometer in the Infrared
Visible Multi-Object Spectrograph
Adaptive Optics Facility
Multi Unit Spectroscopic Explorer
Ground Atmospheric Layer Adaptive OptiCs for Spectroscopic Imaging (AOF)
High Acuity Wide field K-band Imager
GRound-layer Adaptive optics Assisted by Lasers (AOF)
Spectrograph for Integral Field Observation in the Near-Infrared
Crvogenic high resolution Infrared Spectrograph (upgrade)
Multi-Object Optical and Near-infrared Spectrograph
Enhanced Resolution Imager and Spectrograph
Echelle Spectrograph for Rocky Exoplanet and Stable Spectroscopic Observations
Astronomical Multiple Beam Recombiner
Precision Integrated-Optics Near-infrared Imaging Experiment
H-band, 4-beam imaging combiner (Als only)
General Relativity Analysis via VLI Interferometry
Coude Infrared Adaptive Optics
wulli Aperture Mid-Infrared Spectroscopic Experiment (2017/2018)

4-metre Multi-Object Spectroscopy Telescope

4MOST

Figure 1: DIMM measurements in Paranal during the period 1999-2007. Histograms (blue bars) and Integrated percentile curves (red) [Top] Seeing at 0.5 microns [Bottom] Coherence time

AO Types

• SCAO:

- 1 Natural guide star, 1 WFS
- WFS measures Turbulence
- correction by the DM

• AOF GLAO with Laser guide stars:

- 4 Laser guide stars, 4 WFSs
- 1 Natural guide star, 1 TT Sens.
- Average WFS signal → High order DM command + tip tilt meas.
- AOF LTAO:
 - 4 Laser guide stars, 4 WFSs (closer together)
 - 1 Natural guide star, 1 low order sensor
 - WFS signal + Tomography Algorithm
 → high order DM command + tip tilt
 + focus meas.
 - correction by the DM

ESO Paranal VLT AO Instrumentation

Instrument	NACO - NAOS	SPHERE - SAXO	AOF MUSE- GALACSI HAWK-I - GRAAL	SINFONI - MACAO	VLTI - MACAO	GRAVITY - CIAO
AO "type"	SCAO	XAO	GLAO, LTAO, SCAO	SCAO	SCAO	SCAO
Spectral band of AO	VIS, NIR	VIS, NIR (TT)	VIS	VIS	VIS	NIR
Wavefront sensing	Shack- Hartmann, 7x7, 14x14	Shack- Hartmann, 40x40	4 x Shack-Hartmann, 40x40	Curvature Sensor, 60 elements	Curvature Sensor, 60 elements	Shack- Hartmann, 9x9
Wavefront correction, high order	Piezo stack, 185 actuators	Piezo stack mirror, 41x41 actuators	Voice coil adaptive secondary, 1170 actuators	Bimorph mirror, 60 actuators	Bimorph mirror, 60 actuators	Bimorph mirror, 60 actuators
Max. AO speed	500 Hz	1200 Hz	700-1000 Hz	420 Hz	420 Hz, 1050 Hz	500 Hz
Artificial reference source	Sodium LGS (Parsec)	no	4 x Sodium LGS (4LGSF)	Sodium LGS (Parsec)	no	no
Low-order AO with LGS	STRAP (VIS)	no	LTAO: 2x2 SHWFS (IR), GLAO: VISIBLE WFS	STRAP (VIS)	no	no

GRAAL- GALACSI Comparison

Parameter	GR	AAL	GALACSI		
Instrument	Hawk-I (IR imager) ESO		Muse (VIS 3D-spectrograph) Lyon		
Mode	Maintenance mode	GLAO	Wide Field Mode	Narrow Field Mode	
Field of view	10"	7.5′	1'	7.5″	
AO mode	SCAO	GLAO	GLAO	LTAO	
Performance	(S.R. ~ 80% in K-band)	x1.7 EE gain	x2 EE gain	S.R. >5% (10% goal) @650nm	
Natural Guide Stars	On axis, ~ 8 mag	R-mag 14.5 within 6.7' to 7.7' radius	R-mag <17.5 within 52" to 105" radius	On Axis, NIR, Jmag 15 Low Order sensing	
Sky coverage	Close to "bright" stars	95%	>90%	Science target = TT reference	
4LGSF config.	NGS only	Ø12'	Ø2'	Ø20"	
WFS	1 NGS L3-CCD (40*40 sub app.)	4 LGS L3-CCD (40*40 sub app.) 1 TT L3-CCD	4 LGS L3-CCD (40*40 sub app.) 1 TT L3-CCD	4 LGS L3-CCD (40*40 sub app.) 1 IR Low Order	
Loop frequency	HO loop: ≥ 700 Hz	HO loop: ≥ 700 Hz TT loop: 250Hz	HO loop: 1 kHz TT loop: 200Hz	HO loop: 1 kHz LO loop: 200-500Hz	

Credit: Stefan Ströbele

NACO (2001) NAOS + CONICA

444

NACO (2001) NAOS + CONICA

Two Shack-Hartmann Wavefront Sensors, each including 2 pupil samplings: 14x14 (144 valid subap.) and 7x7 (36)

Visible WFS: Spectral range: 0.45 - 1 µm 2 interchangeable lenslet arrays (0.29 and 0.58 arcsec/pixel) EEV CCD 128x128 pixels, 16 outputs max. frame rate from 444 Hz noise : 2.9 to 5.4 e- rms

IR WFS : Spectral range: 0.8 - 2.5 µm 14x14 array + 2 arrays of 7x7 on 3 fixed detector areas (0.8 and 0.4 arcsec/pix) Rockwell Hawaii 1024x1024 pixels max. frame rate 180 Hz noise : 10 to 20 e- rms

NACO (2001) NAOS + CONICA

Deformable mirror (Cilas) 185 actuators (piezo-stacked), 10 µm stroke

F. C

2-axis tip/tilt mirror: 2.1 mas resolution

Real time computer (Shakti): 0dB error BW: 27 Hz (V) and 22 Hz (IR) modal optimization (every 2 min) on-line performance and seeing

Dichroic wheel: 2 neutral and 3 dichroic beam splitter

WFS field selector: NGS in 2 arcmin FOV Tracking (refraction, flexures, moving object)

Observation software: NAOS configuration, control of field selector Aberration pre-compensation, chopping

Off-line preparation software

Diameter: 2m Max Length: 3m Thickness: 0.7m

NAOS Opto-Mechanical Design

Parabolic mirror 2

Visible WFS

Near-infrared WFS

Beamsplitter/Dichroic

Output to CONICA

Input from telescope

Tip/tilt mirror

Deformable mirror

Parabolic mirror 1

Wavefront measurement and correction in the pupil plane

NACO 2010 (Lagrange+) Beta Pictoris b at 4.05 microns Semi-major axis: 9.2 AU (<0.5") Period (2016): 18 or 36 years Mass: ~11 m_{jupiter} Contrast: ~10⁻⁵

GRAVITY: Interferometry with Adaptive Optics CIAO

SH WFS is a pupil plane measurement of local wavefront slopes (first derivative of the wavefront) within a sub-aperture defined by a lenslet array.

CIAO Simulation with yao

Terminal — rlwrap -s 2000 -c -f ~/.yorick/yorick.commands yao > Python — 131×60	😑 😑 🔘 📉 ciao.par	
0.138690 0.122688 0.119340 0.105169 0.104764	File Subsystems Phase Screens Help	
0.0975851 0.0956941 0.0931725 0.0927396 0.0834152	Main Displays	
0.0019489 0.0786446 0.0766679 0.075562 0.0712046 0.0671344 0.0640922 0.0636486 0.0601728 0.0597148		- 1
0.0580244 0.0577328 0.0551358 0.0545314 0.0535706	ciao.par Browse Edit Pause Resum	le
0.0526631 0.0505865 0.0488225 0.0481630 0.0472840	agread aginit a agloon a Imago Display Q inst Q	210
0.0462699 0.0450754 0.0441281 0.0421297 0.0403474		avg.
0.0397883 0.0372450 0.0349912 0.0343022 0.0333231	00 pause step restart Display rate 1	
0.0320120 0.0312405 0.0288021 0.0272856 0.0249249	Display rate in	
0.0185300 0.0112970 0 modes discarded in the inversion	Seeing (550nm) 0.000 👗 Loop Gain 0.000 📫 Image lambda 2.20	+
Summary.	Sustem + 1 (-0 4116 -0 8879)	
Mirror #1. bimorph. 60 actuators. conjugated @ 0 m		
Mirror #2, tiptilt, 2 actuators, conjugated 0 0 m	Instantaneous PSFs WFSs	
WFS # 1, hartmann (meth. 2), 68 subap., offaxis (+0.0",+7.0"), noise enabled		
D/r0 (500nm) = 71.9; 10000 iterations		
Kernel FWHM for the iMat calibration = 0.000000		
Charting Loss with 10000 iterations	75	
> Starting loop with 10000 iterations Deading phase screep "w/ yerick/data/coresp1024 1024 L0 225my 1 fite"	0.5	
Reduing phase screen "~/ yorick/data/screen1024_1024_0_225px_1.1ts Reading phase screen "~/ yorick/data/screen1024_1024_0_225px_2_fits"		
Reading phase screen "~/.vorick/data/screen1024 1024 L0 225px 3.fits"		
Reading phase screen "~/.yorick/data/screen1024_1024_L0_225px_4.fits"		
Reading phase screen "~/.yorick/data/screen1024_1024_L0_225px_5.fits"	별 0.0 ^{7.0} 일 0.0 ^{7.0}	
Reading phase screen "~/.yorick/data/screen1024_1024_L0_225px_6.fits"		
Reading phase screen "~/.yorick/data/screen1024_1024_L0_225px_7.fits"		
Reading phase screen "~/.yorick/data/screen1024_1024_L0_225px_8.fits"		
Reduing phase screen "~/ yorick/data/screen1024_1024_0_225px_9.11ts"	-0.5	
Proceeding		
Short expo. image Long expos. image		
Iter# Max.S/Min.S/Avg.S Max.S/Min.S/Avg.S Time Left it/s		
1 0.000 0.000 0.000 0.000 0.000 0.000 00:16:59.9 9.8	6.0	
51 1.000 1.000 1.000 1.000 1.000 1.000 00:08:01.5 51.3	-0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5	ſ
101 1.000 1.000 1.000 1.000 1.000 1.000 00:04:50.7 52.4	1.0 [
201 1.000 1.000 1.000 1.000 1.000 1.000 00:03:10.8 54.1		
391 1 000 1 000 1 000 1 000 1 000 1 000 00.02.55 54 5		
351 1.000 1.000 1.000 1.000 1.000 0.000 00:02:54.7 54.7		
401 1.000 1.000 1.000 1.000 1.000 1.000 00:02:52.6 54.8		
451 1.000 1.000 1.000 1.000 1.000 1.000 00:02:50.5 54.9		
Short expo. image Long expos. image		
Iter# Max.S/Min.S/Avg.S Max.S/Min.S/Avg.S Time Left it/s		
501 1.000 1.000 1.000 1.000 1.000 00:02:50.2 55.0		
551 1.000 1.000 1.000 1.000 1.000 1.000 00:02:48.3 55.1		
501 1.000 1.000 1.000 1.000 1.000 1.000 00:02:45.0 55.1		
881 1.000 1.000 1.000 1.000 1.000 00:02:44.7 55.2		
851 1.000 1.000 1.000 1.000 1.000 1.000 00:02:39.2 55.4		
901 1.000 1.000 1.000 1.000 1.000 00:02:39.9 55.4		
951 1.000 1.000 1.000 1.000 1.000 00:02:40.7 55.4		
Short expo. image Long expos. image	CIAO7acacoffand0navieK7.par, SH9x9.60-act bimorph DM and TT mirror, full diffraction	n WE
Iter# Max.S/Min.S/Avg.S Max.S/Min.S/Avg.S Time Left it/s		
	1071 out of 10000 iterations	
1851 1.888 1.888 1.888 1.888 1.888 1.888 88:82:45.3 55.3	Iter# Institutes C/Min C/Aug C. Aug May C/Min C/Aug C. Time Left	
	ner# inst.iviax.o/ivin.o/Avg.o Avg:iviax.o/ivin.o/Avg.o Time Lett	

CIAO #1 first light April 2016

PSF on MACAO TCCD, 800nm, ~4% AO Strehl [>40% at 1.6 microns]

GRAVITY/CIAO looking at the Galactic Center

S2 estimated period: 15.5 years Periastron: ~120 AU

Figure 4. Orbit of the star S2 around SgrA* (from Schödel et al. 2002, 2003). Left: Wiener filtered, H-band NAOS/CONICA image (40 mas resolution) of the central 2". The light blue cross denotes the position of SgrA*, and its 3σ error bar. Several of the blue 'S'-stars in the SgrA*-cluster are marked, as well as three of the bright IRS16 stars. The right inset shows the orbital data and best keplerian fit of S2 around the position of Sgr* (circle with cross). Filled circles are measurements with the SHARP speckle camera on the 3.5m NTT, and open squares are the new NAOS/CONICA measurements. Error bars are conservative estimates, including systematic uncertainties.

of 5 minutes each

Outline

- What is Adaptive Optics (AO) good for?
- VLT AO systems: *NACO*, MACAO, PARSEC, MAD, SPHERE, *CIAO*, *AOF*, ...
- E-ELT AO systems: SCAO, MCAO, LTAO
- Summary

The E-ELT on Cerro Aramzones

Credit: ESO

HST

E-ELT/AO

Image: Brandl, Brandner et al.

The E-ELT

- 40-m class telescope: largest optical-infrared telescope in the world.
- Segmented primary mirror.
- Active optics to maintain collimation and mirror figure.
- Adaptive optics assisted telescope.
- Diffraction limited performance.
- Wide field of view: 10 arcmin.
- Mid-latitude site (25 deg) (Armazones in Chile).
- Fast instrument changes.
- VLT level of efficiency in operations.

Five-mirror design

- The 39.3-metre primary mirror collects light from the night sky and reflects it to a smaller mirror located above it.
- The 4-metre secondary mirror reflects light back down to a smaller mirror nestled in the primary mirror.
- The third mirror relays light to an adaptive flat mirror directly above.
- The adaptive mirror adjusts its shape a thousand times a second to correct for distorsions caused by atmospheric turbulence.
- A fifth mirror, mounted on a fast-moving stage, stabilises the image and sends the light to cameras and other instruments on the stationary platform.

The 2800-tonne telescope system can turn through 360 degrees

Lasers

Seismic isolators

Altitude cradles for inclining the telescope

Instrument platforms

sit either side of the rotatable telescope

E-ELT vs VLT

Credit: Roberto Tamai

E-ELT Optomechanics

E-ELT M4 unit

- 2.4-m flat adaptive mirror 6 thin-shell petals only 1.95mm thick
- ~5300 contactless actuators driving the mirror shape at 1 kHz
- Preliminary design study contract completed
- Contracts for final design and manufacturing: awarded to AdOptica

M4 animation (AdOptica)

METIS kick-off: October 2015

The E-ELT Instrument Roadmap

- Instruments selected in consultation with the ESO committees and community, based on
 - Scientific impact, return, flexibility
 - Complementarity to JWST, existing facilities
 - A plan to cover all observing conditions

ELT-MIR: METIS

Year	ELT-IFU	ELT- CAM		ELT-MIR	ELT- MOS	ELT- HIRES	ELT-6	ELT-PCS
2014	Decide so requirement architectur	ience nts, AO re.		VISIR start on- sky	Develop so requiremen MOS/HIRE	Develop science requirements for MOS/HIRES		Start ETD
2015					Cel for Pro Start Phas	Cal for Proposals Start Phase A		
2016					Consortiur for constru	Consortium Selection for construction		
2017								
2018								TRL check
2019							Selection	Start when ready
2020								
2021								
2022								
2023								
2024								
	Pre-studie Enabling T	Pre-studies taking the form of phase A or delta-phase A work and/or ESO-funded Enabling Technology Development (ETD)						unded
	Decision p	Decision point						
	Developme	Development of Technical Specifications, Statement of Work, Agreement, Instrument Start						

28.9.2015: Agreement Signed for METIS Instrument for E-ELT

METIS science themes a multi-purpose instrument for the E-

,+-0.10 [Jy]

Evolved stars

orv or

Martian

tmosphere

METIS, MICADO, MAORY, and HARMONI in 2009

METIS: SCAO+LTAO, MICADO: SCAO+MCAO, HARMONI: GLAO, LTAO, SCAO

METIS 2016

METIS SCAO optical design

mirror

Intermediate focus

METIS SCAO Configurations and Performances										
yao configuration directory	BEST_GUESS3	BEST_GUESS2	BEST_GUESS	BASELINE_6x6px	BASELINE_4x4px	BASELINE_2x2px				
yao grid size (sim.pupildiam)	370	300	300	370	370	370				
SH WFS sub-aperture geometry	37 x 37	50 x 50	60 x 60	74 x 74	74 x 74	74 x 74				
Active sub-apertures (_nsub)	924	1708	2472	3816	3816	3816				
Pixel per sub-aperture	4 x 4	4 x 4	4 x 4	6 x 6	4 x 4	2 x 2				
Desired pixel scale (0.8 * diff limit @ 2.2 microns, origpixsize) ["/px]	0.36	0.49	0.59	0.73	0.73	0.73				
yao pixel scale (pixsize) ["/px]	0.43	0.46	0.69	0.85	0.85	0.85				
DM actuator geometry (nxact)	75 x 75	75 x 75	75 x 75	75 x 75	75 x 75	75 x 75				
Active actuators (_nact)	2964	4032	4036	4008	4008	4008				
Performane results R-MET-111	R-MET-111: Minimum Strehl Ratio: METIS and its associated SCAO (NGS) system shall deliver at least 93% Strehl (goal: 95%) at 10µm, and at least 60% (goal: 80%) Strehl at 3.7µm. These numbers are based on nominal E-ELT optics, a median V-band seeing of 0.65", a zenith angle of 30 degrees, a natural guide star with mK = 10 mag. This performance shall be provided continuously over at least 15 minutes under nominal telescope operating conditions.									
Strehlnumbers at 2.2, 3.7, and 10 microns	0.274 0.6 0.932	0.603 0.834 0.975	0.536 0.823 0.973	0.534 0.799 0.969	0.534 0.799 0.969	0.564 0.816 0.972				
Strehlnumbers with 250nm static aberrations on WFS		0.579 0.824 0.974	0.521 0.794 0.969	0.417 0.734 0.959	0.417 0.734 0.959	0.559 0.814 0.972				

Outline

- What is Adaptive Optics (AO) good for?
- VLT AO systems: *NACO*, MACAO, PARSEC, MAD, SPHERE, *CIAO*, *AOF*,
- E-ELT AO systems: SCAO, MCAO, LTAO
- Summary

"I think we're going to have strong indications of life beyond Earth within a decade, and I think we're going to have definitive evidence within 20 to 30 years," NASA chief scientist Ellen Stofan said Tuesday (April 7) during a panel discussion that focused on the space agency's efforts to search for habitable worlds and alien life.