hochschule mannheim

Lithographie-Optiken in der Halbleiterindustrie

Bildquelle: Zeiss SMT GmbH

Prof. Dr. Stefan Rist

Fakultät für Wirtschaftsingenieurwesen

Outline

- ZEISS the company
- Development of semiconductor industry and Moores law
- Lithography basics and requirements
- Adjustment of optical systems for lithography
- Necessity of EUV systems
- Outlook

History

 Carl Zeiss, born 1816 founds 1846 his own company in Jena and starts the production of simple optical microscopes on the principle of try and error (pröbeln)

- 1866 collaboration with Ernst Abbe (Prof. in Jena) to find a scientific basis for the production of microscopes, from 1872 all constructions based on Abbes calculations
- 1877 first immersion microscope, till now >30 nobel prize winners using ZEISS microscopes

- 1882 collaboration with Otto Schott to produce special optical glases, 1885 foundation of Jenaer Glaswerk (today Schott AG)
- 1888 death of Carl Zeiss and creation of the Carl Zeiss foundation 1889 by Ernst Abbe which becomes single shareholder of both companys

hochschule mannheim

ZEISS today

ZEISS Gruppe

hochschule mannheim

ZEISS today

ZEISS Gruppe

ZEISS today (ownership)

oldest private foundation with the aim to promote science and technology in germany

Computer history

speed: ~0.1 MIPS, memory: ~32Kbyte prize (today): ~ 7 mio \$

RASPBERRY PI 3B+ Raspberry Pi 3 B+, 4x 1,4 GHz, 1 GB RAM, WLAN, BT

1013

1012

speed: ~4x1000 MIPS, memory: ~1Gbyte

Moores law:

Hellweg et. al (ZEISS)

Gordon Moore, Cofounder of Intel (1965): Number of transistors per area doubles every 24 month

Exponential improvement for more than 50 years!

Moores law:

Hellweg et. al (ZEISS)

Gordon Moore:

If the car industry advanced as rapidly as the semiconductor industry, a Rolls Royce would get half a million miles per gallon, and it would be cheaper to throw it away than to park it.

Basic principle of lithography

optics in produktion @ ZEISS

resolution 38nm: ~ 160 Si atoms

ASML scanner with **ZEISS** optics

Building 3D structures and resulting challenges

Intel pentium processor:

https://www.ial-fa.com/

A microchip consists of several layers of circuits on top of each other

Each layer has to be placed on top of the others with an accuracy of the order of ~10 Si atoms!

Today: Half pitch <20nm overlay: few nanometers 1nm ~ 4Si atoms!

Making of a lens for a lithography system

production of all optical elements with sub nm accuracy (5nm growth of human hair/s)

scale ca. 1~100

https://www.nijboerzernike.nl/_html/SCI.htm

mechanical alignment of floors: hight accuracy: ~0.5mm vertical accuracy: width of human hair[50µm]

way out of specification

several lens elements equiped with piezo-mechanical actuators total of ~ 100 DOF

Hochschule Mannheim University of Applied Sciences

Adjustment process @ Oberkochen

Comparing ray aberration and wavefront aberration

$$W(r,\varphi) = W_{ideal}(r,\varphi) + W_{ab}(r,\varphi) \qquad \text{Goal: } W_{ab}(r,\varphi) \to 0$$

expand wavefront error into Zernike polynomials

$$W_{ab}(r,\varphi) = \sum_{i} \alpha_{i} Z_{i}(r,\varphi)$$

$$W(r,\varphi) = W_{ideal}(r,\varphi) + W_{ab}(r,\varphi)$$
 Goal: $W_{ab}(r,\varphi) \to 0$

expand wavefront error into Zernike polynomials

$$W_{ab}(r,\varphi) = \sum_{i} \alpha_{i} Z_{i}(r,\varphi)$$

Aberration vektor in Zernike Basis:

$$\overrightarrow{W}_{ab} = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \end{pmatrix}$$

$$\vec{a} = a_x \hat{e}_x + a_y \hat{e}_y + a_z \hat{e}_z = \sum_i a_i \hat{e}_i$$

manipulating the lens we can change the aberrations:

What we want: $W_{ab} + M \cdot \delta x = 0$

measured aberrations

adjustment

used manipulators:

- piezo mechanical elements:
- controlled deformations:
- Ion beam figuring of lens surfaces:
- spatially resolved temperature changes:

osa.publishing.org

total of ~5000 DOF for δx and >10000 optical spezifications

100 Zernike coeficients 65 fieldpoints Zernike combinations

What we want: $W_{ab} + M \cdot \delta x = 0$

measured aberrations adjustment

Exakt solution impossible!

 $\|W_{ab} + M \cdot \delta x\| \to min$

used manipulators:

- piezo mechanical elements:
- controlled deformations:
- Ion beam figuring of lens surfaces:
- spatially resolved temperature changes:

total of ~5000 DOF for δx and >10000 optical spezifications

use a smart norm! otherwise the best mathematical solution may be impossible to manufacture!

> S. Rist: (DE102015206448A1; EP3079016A2; US20160299436A1)

100 Zernike coeficients 65 fieldpoints Zernike combinations

double patterning:

- very expensive
- difficult to impossible for complex structures
- no further improvement possible

Change to EUV

EUV light is absorbed by everything

• complete system in vacuum

- only mirrors instead of lenses
- no laser for EUV light available

What do they have in common with EUV technology?

sometimes evolution makes a jump...

https://observer.com/2018/06/disney-fox-comcast-x-men-marvel-info-details/

Change to EUV

Figure 16. 193nm lens evolution at Carl Zeiss

http://www.narrowbandimaging.com/incoming/Optical_lithogr aphy_40_years_and_holding_Bruning_2007.pdf

https://www.electrooptics.com/feature/euv-lithographyreaches-starting-line

EUV optics schematic

EUV mirror quality

Mirrors: <50pm rms surface roughness

Inflated to the size of the contiguous United States...

From Wikipedia

...roughness defects must not be taller than 0.4mm.

https://www.euvlitho.com/2018/P22.pdf

Highly specialized coating technology

Challenges

high peak reflectance and large FWHM wave-length matching requires a few ‰ control of absolute thickness lateral uniformity of a few ‰ for d film stress less than ~ 50 MPa thermal stability of several 100°C total coating stack non

correctable thickness error <30pm rms

Enabling the Nano-Age World®

https://www.yumpu.com/en/document/read/8446415/optics-for-euv-lithography-sematech

EUV mirror dynamic control stability

EUV mirrors have placing acurray <0.1nm

one could stabilize a laserspot on the moon within 10cm accuracy from earth

Performance

Matched Machine OVL [nm]

1.2

1.2

3

Source: ASML

Δ

3

09.7 % (nm) 0

0

1.2

1.1

Lot: (1.2,1.2)

1.1

1.2

2

https://www.euvlitho.com/2018/P22.pdf

X

1.2

1.1

6

24nm structures for 10nm logical node

tripple patterning 193nm single exposure EUV

https://www.degruyter.com/view/j/aot.2017.6.iss ue-3-4/aot-2017-0040/aot-2017-0040.xml

Hochschule Mannheim University of Applied Sciences

4

wafers

1.1

1.2

1.1

0.9

5

DUV scanner versus EUV scanner

price ~ 120 Mio Euro

1: >1.5 million wafers per year

https://www.euvlitho.com/2018/P22.pdf

Anarmorphic optics

NA = 0.33

MagX: 4x MagY: 4x MagX: 4x MagY: 8x

Comparison of design examples

https://hobbydocbox.com/Photography/69004093-High-na-euv-lithography-enabling-moore-s-law-in-the-next-decade.html

Hochschule Mannheim University of Applied Sciences

Carl Zeiss SMT site

Construction status October 2017

https://www.euvlitho.com/2018/P22.pdf

ZEISS

Wenn Technologie hilft, die Welt mit anderen Augen zu sehen.

Für diesen Moment arbeiten wir.

Mehr erfahren

Thank you for your attention

/ INSPIRATION

https://www.zeiss.de