

The next-generation infrared astronomy mission SPICA and its SAFARI instrument o.

O. Krause

D = 3.5 m T ~ 80 K passively cooled 57 μ m < λ < 670 μ m Launch 2009

Zodiacal light limited sensitivity

Background limited < 200 μ m if T_{tel} <~ 6 K

Herschel sees distant galaxies via colors SPICA can go deeper and take spectra

HERSCHEL-Atlas Eales et al.

Why observe in the far-infrared

Starlight "recycled" by gas and dust Complete picture only seen by observing in the MIR/FIR

Spectral line senstivity in 2020's

H.Shibai and SPICA team

The `origins' questions – key science drivers for SPICA and SAFARI

- How do stars and galaxies form and evolve over cosmic ages? SAFARI will observe thousands of obscured, far away galaxies and determine what processes govern their evolution
- How does our solar system relate to other planetary systems
 and could life evolve elsewhere?

SAFARI will characterize oxygen, water, ice and rock in young planet forming systems and study their relation to the rocks and ice in our own Solar System

• We want to understand the *physical characteristics*,

and *link the different size-scales* for that (extremely sensitive) *spectroscopy* is key

A Japanese – European endeavour ...

SPICA Status

- Original Plan
 - JAXA preproject since 2008
 - ESA CV MoO candidate since 2007
 - Approval in 2014 by JAXA and ESA for the launch in 2023.
- SPICA FY 2014 budgetary proposal in Japan
 - R&D activity going on, but difficulty for the whole project.
 - SPICA has the top priority among the future science missions in Japan
- Discussion on new framework started
 - To establish a more feasible plan (programmatic & technical)
 - To increase the role of European contribution SPICA as a JAXA-led project.
 - The scope of a European-led SPICA mission within the Cosmic Vision M5 call is currently being studied by ESA

Japanese cryocooler developments

³He JT cooler with 2-stage Stirling developed for Astro-H

SPICA instrument suite

	SMI SPICA Mid-Infrared Instrument	SAFARI SPICA Far-Infrared Instrument
Wavelength	20-37 μm	34-210 μm
FoV	5'×5' (Imaging) 2.5'×3" (Spectroscopy)	2' × 2'
Spatial Resolution (FWHM)	1.4" @ 20 μm 2.6" @ 37 μm	4" @ 47 μm 7" @ 85 μm 13" @ 160 μm
Imaging	R~20 9-50 μJy	34-60, 60-110, 110-210 μm 14 -32 μJy
Spectroscopy	R=1000-2000 0.2-1 × 10 ⁻¹⁹ W/m ²	R=1000 @ 210 μm R=5000 @ 35 μm 3-4 × 10 ⁻¹⁹ W/m ² (R~50 mode)

The SpicA FAR-infrared Instrument instrument SAFARI

- Scanning Fourier Transform Spectrometer with 2'x2' FoV
- Simultaneously observing in 3 bands \rightarrow 34-210 μm
- TES detectors/SQUID read out at 50 mK
- Frequency Domain Multiplexing
- Dispersive element; slit/grism to reduce background
- To be built by an SRON-led consortium
 - ~15 institutes in Europe, Canada, Japan cost ~170M€

Parameter		Waveband			
		SW	MW	LW	
Band centre		47 µm	85 µm	160 µm	
Wavelength range		34-60 µm	60-110 μm	110-210 μm	Gen
Band centre beam FWHM		4″	7″	13″	eral
Number of detectors		43 x 43	34 x 34	18 x 18	
Confusion limit		0.015 mJy	0.5 mJy	5 mJy	Pł
Minimum Zodiacal background		8.0 MJy sr ⁻¹	3.8 MJy sr ⁻¹	2.1 MJy sr ⁻¹	noto
Limiting source flux density (5σ-1hour)*		20 µЈу	30 µJy	45 µJy	met
Time to reach confusion limit at $5\sigma^*$		6000 s	13 s	0.3 s	ſŸ
Limiting line flux* (5σ-1hour)		5.3x10 ⁻¹⁹ Wm ⁻²	4.8x10 ⁻¹⁹ Wm ⁻²	4.1x10 ⁻¹⁹ Wm ⁻²	ls
Limiting* line flux density 5σ-1hour	High Res. (R~2000)	17 mJy	29 mJy	46 mJy	becti
	Medium Res. (R~500)	4.2 mJy	6.9 mJy	11 mJy	rosco
	Low Res (R~50)	0.42 mJy	0.69 mJy	1.1 mJy	рү

Ultimate sensitivity – Transition Edge Sensors

TES detector Focal Plane Assembly (FPA)

FPA technology developments:

- Interconnects
- Detector mounting
- Kevlar thermal insulating suspension
- Magnetic shielding:
 - Niobium (superconducting)
 - Cryoperm 10

SAFARI cooler - engineering model

- EM fabrication started
- Heat switches: successful thermal / mechanical / thermal test campaign
- Sorption core: proof tested at 190 bar, thermal test to follow.
- Salt pill ready to be integrated

SAFARI FPA/cooler cryotest facility @ MPE

The SAFARI project – who does what

Conclusion : Programmatic situation of SPICA

- Budgetary constraints
 - → M4 has changed very much in size and nature →SPICA should apply for M5
 - ESA:
 - M5 size ~550 M€
 - M5 call ~ 2^{nd} half of 2015
 - ESA/JAXA CDF study: determine `best achievable mission'
 - Note: all this is also input for November SPC meeting
 - JAXA:
 - SPICA (only)one L-mission after ASTRO-H
 - Very good prospects in principle no competition
 - Need to re-do MDR/SRR

SPICA -still a long way ahead until launch on a H2B rocket in 2028 ...

