

Advanced Rayleigh Ground layer adaptive Optics System

Sharper vision with ARGOS eyes

Inst.: W. Gaessler, D. Peter Konst.: (Th. Bluemchen), M. Ebert, N. Muench, RR. Rohloff FWT: A. Boehm, Klaus Meixner, ++ SW: J. Borelli, M. Kulas, ++ Elect.: M. Lehmitz, L. Mohr, ++

- Who is involved and why did we start?
- Some notes on Adaptive Optics
- What's the goal of ARGOS
- How does ARGOS look like?
- Some struggle we had and solved?
- What is next?

- Who is involved and why did we start?
- Some notes on Adaptive Optics
- What's the goal of ARGOS
- How does ARGOS look like?
- Some struggle we had and solved?
- What is next?

ARGOS Consortium

- PI Max Planck Institut für extraterrestrische Physik, Garching
- CoPI Osservatorio Astrofisico di Arcetri, Florence
- CoPI Max Planck Institut f
 ür Astronomie, Heidelberg (Software, Calibration Unit, Vibration Compensation System)
- CoPI Center for Astronomical Adaptive Optics, Tucson

- Astrophysikalisches Institut, Potsdam
- ·Landessternwarte, Heidelberg
- ·Large Binocular Telescope Observatory, Tucson
- •Max Planck Institut für Radioastronomie, Bonn
- Max Planck Institut Semiconductor Laboratory, Munich

AIP

<u>History and Mission</u>

- Laser Guide Stars workshop, Florence Oct. 2006
- Phase A Kick off, Heidelberg May 2007
 - Design of a laser and wavefront sensor system exploring the wide field capabilities of LUCIFER (MOS + Imaging).
 - <u>Promptly</u> implementation of a ground layer system.
 - Operability significant over median seeing.
 - Reliable, low maintenance, reasonable cost system.
 - Minimize impact to telescope and LUCIFER.
 - Identify upgrade paths to at minimum on-axis diffraction limited performance.

- Who is involved and why did we start?
- Some notes on Adaptive Optics
- What's the goal of ARGOS
- How does ARGOS look like?
- Some struggle we had and solved?
- What is next?

<u>Adaptive Optics (AO)</u> and Laser Guide Stars (LGS)

Sky Coverage

- ~5% with natural Guide
 Stars @V-Band
- ~ 50% with Laser Guide Stars (LGS) and natural Tip-Tilt (TT) star
- Up to 100%
 with LGS and
 w/o TT

<u>Anisoplanatism</u> <u>The problem with the Field</u>

Correction only in <1' FoV @K-band

Area Near Centre of NGC 3603 (VLT YEPUN + NAOS-CONICA)

ESO PR Photo 33c/01 (3 December 2001)

© European Southern Observatory

ARGOS

GLAO Ground layer Adaptive optics

- Multiple sensors
- One Deformable Mirror
- Performance:
 - First order: only seeing reducer!
 - Better seeing statistic artificialy
 - Increase of encircled energy
 - Increase of observing efficiency

Sky Coverage:

- >17% with NGS
- >50% with LGS
- FoV: >4'

- Who is involved and why did we start?
- Some notes on Adaptive Optics
- $\boldsymbol{\cdot}$ What's the goal of ARGOS
- How does ARGOS look like?
- Some struggle we had and solved?
- What is next?

Ground Layer on Mt. Graham

Cn²(h) profile from Mt Graham (S. Egner, E. Masciadri)

AstroTechTalk 2015.01.16

ARGOS Goal

Increases point source sensitivity of <u>LUCIFER</u> 4'x4' Slit 0.25"

Rabien 2007

ARGOS

Increases point source sensitivity of <u>LUCIFER</u> 4'x4' Slit 0.25"

Rabien 2007

Increase point source sensitivity of LUCI 4'x4' 7.5"×7.5" 0.25" 16.05.2014 - M13 One natural guide star 400 Hz, 150 modes FWHM ~0.3'' center FWHM ~0.6'' edge Seeing ~0.9" Exptime 2.7 sec ARGOS Talk 2015 01 16

November 2014

- Who is involved and why did we start?
- Some notes on Adaptive Optics
- What's the goal of ARGOS
- How does ARGOS look like?
- Some struggle we had and solved?
- What is next?

ARGOS Overview

- Ground layer AO system
- 2x3 ~18W pulsed Rayleigh
 laser beacon @12km
- Gated Shack-Hartmann
 wavefront sensors
- Natural guide star tip tilt
 sensor (M_{limit} ~ 19)
 - Truth sensor for long term non-common path (existing "First Light AO" sensor)

- Who is involved and why did we start?
- Some notes on Adaptive Optics
- What's the goal of ARGOS
- How does ARGOS look like?
- Some struggle we had and solved?
- What is next?

<u>Launch Telescope</u>

- Astigmatism due to radius on the "flat" launch mirrors
- Changes with temperature
- Lasers heating up the mirror

<u>Countermeasure:</u>

- Astigmatism corrector in the launch path, set by a temperature model
- Heater on the back side of the mirror?

Pockels Cells

- Pockels cells "de-aligned"
- Ozone was "eating" the mounting

<u>Countermeasure:</u>

- New high voltage electrodes
- New material
 LPVDF
- New mounting

AstroTechTalk 2015.01.16

Pockels Cell #2

Calibration Unit

- 1. Ghosts in sub-apertures
- 2. Couldn't get all three laser at once into the wavefront sensor

Countermeasure:

- 1. New hologram
- 2. Different fiber plate

Operations

- Overheads due to
 - Spotters (2+2 spot + 1+1 coord)
 - Aircraft
 - Satellites
- Lot of people to operate (4+)
 <u>Countermeasure</u>:
- Installation of TBAD

- detects transmitted signal from airline planes
- Improved aircraft camera
- More Software, much more Software, a lot much more Software

Observation vs. Cirrus

Strong attenuation

AstroTechTalk 2015.01.16

LGS with cirrus background

Clear sky

Some cirrus

Opaque sky

The political counterstrike

- Complain about launching lasers at Mt Graham
 - Through Forest Service to University of Arizona, which forwards the complain to LBT Observatory.
- No official statement who it is to the ARGOS team.

- Who is involved and why did we start?
- Some notes on Adaptive Optics
- What's the goal of ARGOS
- How does ARGOS look like?
- Some struggle we had and solved?
- What is next?

What is next?

Testing spectroscopy March 2015 Getting the system more efficient until July 2015 Installing, commissioning SX side July - Dec 2015 Binocular mode Jan - mid 2016, Handover mid 2016?

ARGOS Upgrade Proposal

- A phased approach towards highest resolution at visible wavelength
- A Na laser port is already prepared in the system
- All sky diffraction limit at IR
 LGS AO at visible wavelength
 LGS guided Interferometry

Conclusion

ARGOS works, works robust and stable and provides the promised performance.

SX is missing. There is still a lot of work to get it easy to operate and integrated with LUCI.

