Technology and Applications of Frequency Comb Lasers

Matthias Lezius Menlo Systems GmbH Martinsried www.menlosystems.com

Presentation at Max-Planck-Institut für Astronomie Heidelberg am 6.2.2015 Some basic physics...

What is frequency?

Frequency is a measure of how often something (e.g. maxima of a electromagnetic wave) occurs in a certain time.

What is wavelength?

Wavelength is the spatial distance between two identical features of a (electromagnetic) wave.

Speed of light = constant = wavelength * frequency

Speed of light has been defined as c = 299792458 m/s

"Never measure anything but frequency!" (Arthur L. Schawlow, Nobel Price laureate 1981)

Is counting oscillations of light waves possible ?

Use a rf counter?

532 nm or 564 THz, 564 000 000 000 000 oscillations per second. Too much for rf counters!

Solution to the problem requires some basic knowledge in laser physics...

Femtosecond Laser Basics I

The electromagnetic field between two mirrors can only exist as a standing wave.

- > Cavity modes
- Round trip time

A single pulse of a femtosecond laser provides a comb-like spectrum !

For a short laser pulse the phase of these frequencies need to be controlled by dispersion

Femtosecond Laser Basics II

For frequency stabilization of cavity lines two actors are needed:

- 1) Cavity length control
- 2) Cavity dispersion control

This is basically what you need for the optical frequency comb!

Frequency Ruler

How to measure the Offset Frequency

The CE-Phase is the Offset Frequency *and* it is controlled by intracavity dispersion

Jones, et al. Science, vol. 288 (2000) Udem et al. Nature, vol. 416 (2002) J. Hall & T. Hänsch Nobel Prize 2005

$\mathsf{OPTICAL} \Leftrightarrow \mathsf{RF} \Leftrightarrow \mathsf{OPTICAL}$

Frequency Comb is a gear between the optical and the radio frequencies !

It links microwave to optical frequency domain.

This link can be used in both directions

Frequency Comb is the core product of Menlo Systems GmbH

- Turn key
- Easy to operate
- Covers visible to MIR
- Compact
- Robust
- Reliable
- Installation in < 1 day</p>

... work at highest accuracy and precision...

- Measure and calibrate cw lasers
- control and stabilize cw lasers
- calibrate precision spectrographs
- optical fourier transform spectroscopy
- generate stable radio frequencies
- for massive parallel spectroscopy
- for precision dimensional metrology and ranging

Typical customers are from

- cold atom physics (> 180 groups)
- quantum optics (plenty)
- time and frequency generation (NMIs + research institutions, universities)
- optical clock experiments (> 40 experiments)
- astrophysics labs (several)

Menlo offers solutions for many fields

- dimensional metrology
- precision measurements & control
- detection and analysis
- optical clocks
- calibration of lasers & spectrometers
- synchronization and timing
- frequency distribution
- amplifier seeding
- high resolution and THz spectroscopy
- quality inspection
- medical & ophthalmology
- micromachining
- > 2 photon polymerization and 3d printing

- Direct measurement of the cosmic expansion
- Study the variation of fundamental constants

Echelle spectrograph calibration

ThAr and comb spectrum on HARPS spectrograph

	Thorium-Argon	Frequency comb
Line spacing	😑 irregular	🕒 perfectly regular, adjustable
Line intensities	irregular	Low fluctuations line-to-line, Spectral envelope programmable
Line positions	fixed	🕞 tunable
Absolute frequency	😑 Known to ~ 10 m/s	🕞 Given by atomic clock
Short-term repeatability	Some 10 cm/s	 2.5 cm/s demonstrated, 1 cm/s appears feasible
Long-term repeatability	Drifts through aging of lamp (~m/s)	🕞 No drift

Optimum mode spacing for spectrograph calibration: 3x Resolution of spectrograph

- → Typical mode spacings: 10 30 GHz Mode spacing for HARPS: 18 GHz
- → Increase of mode spacing by Fabry-Perot filters

Concept of HARPS comb

Configuration of an Astrocomb

Abbreviations:

Cw laser: continuous wave fiber laser

FPC: Fabry-Pérot cavity

- GPC: combined grating and prism compressor
- SHG: Second-harmonic generation
- PCF: tapered photonic crystal fiber

Typical Astrocomb System

2 Boxes like this \uparrow

By December 2014 four units have been shipped

Nonlinear frequency conversion

Power amplifier:

Frequency conversion:

Spectral broadening

Flattening of broadened spectrum

Wavelength(nm)

Calibration of HARPS spectrograph in La Silla, Chile

Test campaigns on HARPS

Exoplanet HD 75289 b

Installation at the German Vacuum Tower Telescope (VTT) in Tenerife, Canary Islands

October 2011 / May 2012

A comb-calibrated solar atlas

Molaro et al. A&A 560, A61 (2013)

VTT telescope, Tenerife

Tilo Steinmetz and Rafal Probst installing on site

Comb based ranging

Comb based Formation Flights: IRASSI

Future mission study for 5 free flying satellite based telescopes

Telescopes	5
Baselines	10
Baseline distance	7 – 1000 m
MIR Wavelength	50 – 300 µm
Bildfeld (Einzelteleskop)	6 arcsec
Winkelauflösung (@ 300 µm)	0.1 arcsec
Genauigkeit Teleskop-Pointing (APE)	0.3 arcsec
Ranging precision	1 µm

Infrared telescope formation DARWIN (credit ESA)

Goal: Solve MIR interferometric ranging problem for a a DARWIN-type mission with comb based technology (Menlo, MPIA, UniBWM, TUBs, financed by DLR)

Dual Comb based Ranging

Interferometric range detection via RF time dependent signals from heterodyning between 2 combs at different repetition rate

(Newbury & coworkers 2009)

Time Of Flight + Interferometric measurement resolves the ambiguity compared to pure interferometric ranging

