MATISSE

<u>Multi-AperTure Mid-Infrared SpectroScopic Experiment</u>

for the Very Large Telescope Interferometer (VLTI)

The MATISSE Consortium

With further contributions from ESO (detectors + read-out electronics), Uni Kiel (Sebastian Wolf, head of Science group) and Vienna (Joseph Hron, Calibrator list)

Total costs: 3,125 Mill €, 134 FTE; MPIA contribution: ≈ 24 %

Die MatissianerInnen am MPIA:

Projektwissenschaftler: Projektmanager:

Kryostate: Elektronik: Feinwerktechnik: Software: Konstruktion: Detektor: Data simulation: Science Group: Thomas Henning (Co-PI) <u>Uwe Graser</u>

Markus Mellein, Werner Laun Michael Lehmitz, Lars Mohr + Abteilung Klaus Meixner, Armin Böhm + Abteilung Udo Neumann, Florian Briegel Monika Ebert, Ralf-Rainer Rohloff Vianak Naranjo / Johana Panduro, Peter Bizenberger Rainer Köhler Klaus Meisenheimer, Roy van Boekel, Jörg-Uwe Pott

The Timeline of MATISSE

Science characteristics of MATISSE

MATISSE measures:	visibility, imaging (closure	phases, differential phases)	
Number of beams/telescopes	4 (2 or 3 possible)		
Wavelength bands	L (3.2 – 3.9), M (4.5 – 5) and N (8 – 13 μm)		
Field of view	2 arcsec (UT)		
Spectral resolution	L/M	Ν	
Low	20 <r<40< th=""><th colspan="2">20<r<40< th=""></r<40<></th></r<40<>	20 <r<40< th=""></r<40<>	
Medium	200 <r<400< th=""><th colspan="2">200<r<400< th=""></r<400<></th></r<400<>	200 <r<400< th=""></r<400<>	
High	750 <r<1250< th=""><th></th></r<1250<>		
Very high	5050 at 4.05 μm (Br-α) in 6 3800 at 4.7 μm (CO) in 5 th	th order order	
Spatial resolution (λ /D for 100m)	0.007 arcsec	0.02 arcsec	
Sensitivity (UT) with fringe tracking	0.02 Jy (L=10.4)	0.02 Jy (N=8)	
Sensitivity (AT) with fringe tracking	0.4 Jy (L=7)	0.4 Jy (N=5)	

MATISSE im VLTI-Lab

Current view of VLTI Lab

Interferometry !?

.... what's that ???

Delay-Lines on Paranal

Fringes and coherence

Poly-chromatic fringes of a point source \rightarrow "white-light fringe"

Coherence length:Range of OPD, in which fringes appear: $\lambda^2/\Delta\lambda$

(\approx 14 µm für λ =10 / $\Delta\lambda$ =7 µm)

Relative Delay

Upper row: fringe pattern of a single point source at + $\alpha_0/2$ und at - $\alpha_0/2$

Lower row: three fringe patterns with both point sources in the field and the baseline increasing from left to right

- Astronomical target emits light with intensity $I_{v}(\Theta, \Phi)$ from a small region at sky (x,y around Θ_{0} and Φ_{0})
- From the interferometric signal on the detector (i.e. the amplitude and phase of fringes) \rightarrow derive the <u>Visibility V(u,v)</u> (Visibility function V (D, λ , object))
- $(u,v) = \vec{D}/\lambda$ = baseline vector \vec{D} projected onto plane of the sky in units of $\lambda \rightarrow u, v$ plane

Van Cittert-Zernike Theorem: The visibility is equal to the Fourier transform of the object brightness distribution $I_{v}(\vec{r})$

$$\begin{vmatrix} \mathsf{V}_{\mathsf{v}} \left(\frac{\vec{D}}{\lambda} \right) \end{vmatrix} e^{-i\phi_{V_{v}}} = \frac{\int_{\delta\Omega} dx_{\Omega} dy_{\Omega} I_{v}(\vec{r}_{\Omega}) e^{-2\pi i ((\vec{D}/\lambda) \cdot \vec{r}_{\Omega})}}{\underbrace{\int_{\delta\Omega} dx_{\Omega} dy_{\Omega} I_{v}(\vec{r}_{\Omega})}_{\text{Total specific flux}}} \end{vmatrix}$$

Measure: Visibility V(u,v) and phase of fringes \rightarrow deconvolution \rightarrow I_v(\vec{r})

 $\rightarrow Spatial resolution of interferometer \sim Wavelength / Baseline$ $\Delta \Theta_{interferometer} = \lambda/2b [rad] (b= max baseline)$ **Calibration** by an unresolved point source $(,,calibrator'', V=1) \rightarrow$ neccessary because of atmospherical and instrumental effects

Creation of images:

- fill the u,v plane as much as possible (many different baselines)
- Image needs measurement of amplitude and phase of visibility
- Add regularisation (constraints, boundary conditions, additional information)
- Fit an image to the data (deconvolution, iteration)

Measuring phases:

 Usage of fringe tracker ("phase referencing") + determination of φ_{offset} (e.g. by metrology FT -> MATISSE)
Usage of closure phases ("a closed triangle of baselines") (Closure phase (1-2-3) = φ₀(1-2) + φ₀(2-3) + φ₀(3-1))

Accreting planet in disk

- ATs, 3 configurations, N-band
- star:planet contrast ratio 200:1 (pretty optimistic)
- average visibility SNR = 20

Beam recombination concepts

- co-axial, combination in image plane (AMBER, MATISSE)
- multi-axial, combination in pupil plane (MIDI)

DETECTOR

The multi-axial Beam combination:

MATISSE Instrument Parameters

	L/M-Band (3-5 µm)	N-Band (8-13 μm)	
Hardware:	one warm optical bench + two independent cryostats		
Optics: Entrance pupil size / Anamorphosis	18 mm / 24 : 1		
Cryostats: Size / weight	2044 x 972 x 672 mm / ~ 1500 kg		
Cooling	Pulse Tube Cooler (Cryomech PT 410)		
Temperature of Optics /Detector	40 K / 40 K	40 K / 8 K	
Position adjustable / accuracy:	+/- 5 mm / < 0.2 mm		
Temperature stability: Detector, Optics	< 0.1 K		
Cool-down time:	3.5 days		
Detector	Hawai II RG 5 μm	Raytheon Aquarius	
Pixel / Pixel-size	2k x 2k / 18 μm	1k x 1k / 30 µm	
Frame time / RON / Pixel clock	30 msec / 3 e / 1.28 MHz	30 msec / 300 e / 1.52 MHz	
Data rates NGC -> LLCU / LLCU -> IWS	192 / 34 MByte/sec	307 / 110 MByte/sec	

MATISSE Warm Optical Bench

- Beam commuting device for calibration purposes (IP 1 <-> IP 3; IP 5 <-> IP7)
- Anamorphism by cylindrical optics (1:4)
- Dichroics for wavelength separation (N-band and L/M-band)
- Periscopes to feed the 4 beams into each of the two cryostats, co-alignment between warm optics and cold optical bench
- Delay lines (8 piezos) to equalize the OPDs
- Calibration devices (internal optical sources + source selector module)

MATISSE Warm Optical Bench

MATISSE cold optics + PTC

The MATISSE cryostats

Some requirements / specifications

Temperatures: COB: < 40 K detector: Aquarius: 7 – 9 K, Hawaii II RG: 40 K (T-Control) camera housing: < 28 K, pre-amp: 60 (T-Control)

Temperature: temporal stability

COB: < 0.1 K Detector: < 0.1 K

Temperature gradients during cool-down and warm-up for detector and optics

Aquarius: dT < 2,5 K/min (T> 50 K), dT < 10 K /min (T < 50 K) Hawaii: < 2K / min Optics: < 2K / min

 Vibrations inside: detector displacement in vertical direction Hawaii II RG: < 1.8 μm ptv Aquarius: < 3.5 μm ptv
Vibrations outside: "low" vibrations at cryostat surface, He-tubes, floor,

Power dissipation in VLTI-lab: VLTI-ICD -> heat load < 10 W, cooling load < -20 W **Surface temperatures** of cryostats and He-lines:

VLTI-ICD -> ΔT < +0.5 / -1 ° Celsius compared to ambient air temperature

Position adjustment ranges for cryostats (medium alignment step): height: range: +- 3 mm, accuracy = 0.2 mm x,y: range: +- 5 mm, accuracy = 0.25 mm

Accessibility of optics and detector \rightarrow opening the cryostat from two sides

The MATISSE cryostat

- Pulse Tube cooler Cryomech PT410
- N2 cooled radiation shield
- Super insulation

150 cm

The MATISSE control-electronics

- ... in 3 electronic racks
- Usage of PLCs for cryogenic control and housekeeping
- 70 motors: 58 in the warm (4 DC / 54 Stepper), 12 in the cold (Stepper)
- 8 Piezos, 8 cold shutter, 2 calibration lamps, 37 T-sensors, 17 heaters
- Electrical power:

	Cool-down	Normal Operation	Warm-up
UPS:	2.6 kW	3.3 kW	2.6 kW
Non-UPS:	22.2 kW	16.5 kW	7.6 kW

The 3 MATISSE electronics cabinets

MoU with ESO:

Article 10. MATISSE Guaranteed Observing Time

The amount of GTO UT and AT time rewarding the work of the MATISSE Consortium is :

37.5 4-UT nights and 173 nights of observing time at VISA (VLTI array of Auxiliary Telescopes) over a period of 8 years (refer to The Agreement N° 39662/ESO/11/31373).

Article 11. Use of the Guaranteed time

- The PI, co-PIs, and Science Group will define a joint science program to be executed in the Guaranteed Observing Time.
- The Guaranteed Observing Time will be distributed to the contributing institutes proportionally to their share defined in Article 9.

.... and now some pictures of MATISSE at the Experimantierhalle and at OCA/Nice

The current status at Nice

This is (not) the end