Hierarchical galaxy formation; disks merge to disk bulges and Ellipticals

Galaxies merge to form larger ones Mergers of roughly equal-sized

into bigger ones:

galaxies often (not always) turn Spirals into Ellipticals

In a "hierarchical" scenario, smaller

structures form first, and later merge

Blue: Dark matter Halo; yellow: gas; red: stars

The Mice: Colliding Galaxies with Tails of Stars and Gas - NGC 4676 O HUBBLESITE.org

II.How did we learn about galaxy formation?

Deep Sky Surveys at many Wavelengths

MMA RAYS	X - RAYS	UV	VISIBLE INFRARED		RADIO	
10 ⁻² Å		100 Å	1μm	0.1 mm	1 cm	1 m
Star Formation						
Black Hole Growth						
Gas content						
Interstellar Medium Chemistry						
Energy Feedback						
Kinematics						
Morphology, Merging						
Environment						

Multiwavelength surveys: combined efforts to get the whole picture. A new era of astronomy: big collaborations, <u>huge databases</u>

Astronomers can look back in time:

light from very distant galaxies took billions of years to reach us

looking far is looking back

Large telescopes on the ground: Spectroscopy gives each galaxy a "time stamp"

120 spectra of distant galaxies

wavelength

wavelength

The emission lines are at longer wavelengths than measured in the lab: They are "redshifted".

This is because distant galaxies move away from us ("Doppler effect", expansion of the Universe).

The redshift (=velocity) measures the distance and how far we look back in time

Star formation in galaxies over the last 10 billion years

The Star Formation Rate-Stellar Mass Relation("Main Sequence")

 Star-forming galaxies form a defined relation: SFR - stellar mass out to z>2.
 Galaxies of similar mass had similar SF histories.

2) Range of log(SFR) $\sim \pm 0.3$ dex (1 σ) at all z:

starbursts had only a modest, barely evolving role out to z~2
New paradigm, rejects most popular earlier hypothesis.
Constraint to effect of galaxy mergers on starbursts.

3) Normalization evolves strongly: SFR x1/6 from $z=1 \dots 0$ (8 Gyr) Evolution of SF since $z\sim2$ dominated by a gradual decrease of SFR.

rapid star birth & gas consumption

slow star birth & gas consumption

small galaxies

big galaxies

(image: Driver 1998)

HST: currently the most sensitive telescope in the short-wavelength infrared (near-infrared): Can observe redshifted UV (star formation) from the most distant galaxies

JWST (launch: 2018) will be more sensitive, and reach longer infrared wavelengths: will reach even further back in time, and observe redshifted visible & infrared light in earliest galaxies

JWST will have much improved sensitivity to faint distant galaxies:

First Stars & Galaxies

Small galaxies across cosmic time

JWST Ultra Deep Field

Simulation

