

Laser Guide Star Systems ESO 4LGSF and Technology R&D

Domenico Bonaccini Calia European Southern Observatory

VLT Adaptive Optics Facility and the 4LGSF

Technology Development: Laser Systems R&D

MPIA Heidelberg, 03.02.2017

Laser Guide Star Systems ESO 4LGSF

D.Bonaccini Calia, W.Hackenberg, M.Comin, C.Dupuy., F.Gago, I.Guidolin, R.Guzman, R.Holzlohner, S.Huber, L.Kern, S.McLay, D.Popovic, M.Quattri, J.Quentin, S.Lewis, T.Pfrommer, R.Arsenault, P-Y Madec, J.A.Abad, G.Fischer, J-P Kirchbauer, P.Duhoux, M.Enderlein, J-F Pirard, J.Beltran, J-L Alvarez, D.Del Valle, J.C.Palacio, D.P.Wei

- AOF and 4LGSF Overview
- 4LGSF Top Level Requirements
- LGSU1 Integration and Commissioning step
- 4LGSF Integration
- 4LGSF Standalone Commissioning

+ES

4LGSF Modular Design

4x LGS Unit (UT4 Centerpiece)

- Laser Cabinet (Toptica/MPBC)
- Laser Head (Toptica/MPBC)
- Launch Telescope (TNO)
- BCDS (ESO)
- LGSU Control Electronic Cabinet (ESO)
- LCU cabinet (under Nasmyth B)
- Safety and Housekeeping System (under Nasmyth B)
- Toptica Heat Exchanger (under nasmyth B)
- Aircraft Avoidance Cameras (UT4 Top Ring) shared between LGSF and 4LGSF
- Laser Pointing Camera (UT4 Top Ring)

4 🛛 🖬 🖿 🖬 🖛 🛯 🗖 🗖 🖉 🗖 🖬 🔛 🚟 🔂 🛶 🛀

- Essential tool, all along the Commissioning (Pointing models, PM verifications, focus loops check, return flux) and in Operation.
- With LPC we will be able to automatically record photometry and PM corrections, when in AODRIVEN mode, during operations
- 8-14km scattering measurement/monitoring on-line (cirrus)
- Photometry calibration check. Accuracy 0.1 mag.
- Private p2p LAN for remote maintenance, outside UT4 network

LPC: Linux Smartcamera on LAN

- Absolute coordinate astrometry
- Offsets of LGS while UT4 cycles

LGS Photometry LGS FHWM and cirrus monitor

See LPC on SPIE Vol 9909 (2016)

MPIA Heidelberg 2017

4LGSF: Main Requirements from AO

- LGS Return Flux (TLR7): ≥ 7.7 × 10⁶ photons/s/m² at the ground, pointing at zenith, with Sodium column density = 4 × 10¹³ m⁻²
- LGS Spot Size (TLR 8): with 0.6" NGS fwhm, the short axis of the LGS fwhm shall be ≤ 1" at UT4 ALT 60°, short exposure;
- Pointing Range (TLR 9): Radial pointing: from 0 arcsec to 6 arcmin with respect to VLT optical axis, square geometry asterism
- Open Loop Pointing Accuracy: Radial 2.5"

4LGSF Integration, Commissioning: stepped approach

- LGSU1 on VLT-UT4 integrated in Feb-Mar 2015
- Commissioned LGSU1 in 2Q15. With GRAAL 3Q15
- The team includes ESO and Toptica+MPBC staff
- From the LGSU1 commissioning, implemented changes in the LGSU2-4 back at HQ in Garching
- Full 4LGSF reintegration at base camp first, test that everything works (Jan 2016)
- Permission to Install on UT4: Feb 2016
- Daytime verification on UT4: Mar 2016
- First calibrations on Sky: Mar 2016
- Full Commissioning Nights:

26 April-4 May, 15June-21 June

ESO 4LGSF: Integration in the VLT

MPIA Heidelberg 2017

ESO 4LGSF: Integration in the VLT

- UT4 structure prepared
- 10 days UT4 Full Access
- Intense team activities

+ES+ 0

4LGSF Commissioning and on-sky results

- 10 Full nights April 26th May 5th lost to bad weather 2 full nights plus 12h
 - First Light evention site
 - Thermal imaging under environmental loads.
 - Warelength scan of all four LGS
 - kled the M1 glitches problem which causes offsets the pointing model
 - Constrated 4 pointing medels with Nasmyth A and Nasingth B. Verified NasA.
 - Calibrated 4 focusing offsets and checked the control coefficients of the focus.
 - Taken LGSNGS images with the guider at best focus, for different ALT (fwhm test)
 - Verified repeatability of the 4 FSM and of the LPC measurements on the 4 LGS
 - Stress tested LPC on special sky fields to verify that the 4LCS can be used
- 6 full nights June 15th June 21st lost to bad weather 1.5 hights.

data

- Verified Nas B pointing and locussing loops
- Centering tool from TCS
- Extended muse tests
- RF polar map
 - PLC photometric calibra

© Gerd Hüdepohl/ESO

On Sky wavelength calibration

Performed the LUs wavemeter calibrations

Assigned set wavelength to the seed WL control and measured the RF
Lasers are tuned OK.

Relative flux

0.198312236

0 226441632

0.486638537

0.810126582

1.000000000

0 964838256

0.669479606

0.369901547

0.201125176

Relative flux

0 179715302

0.192170819

0.435943060

0.768683274

1.000000000

0.935943060

0.749110320

0.432384342

0 238434164

Open Loop Pointing

LGS Open loop pointing:

explored ALT range 30-85 deg, NasA, 3 asterisms LPC needed to meet OL pointing requirement. M1 glitches.

In Spec with LPC : r< 2.5"

MPIA Heidelberg 2017

Open Loop Pointing (2)

Repeatability LPC measurements (rms):

Open Loop Pointing (3)

■ M1 glitches, 4" steps. Now we are sure. Problem handled by procedures: <u>OK with LPC</u>

Large PM offsets can be created by the M1 glitch during operations

LGSU1		LGS	SU2	LGS	5U3	LGSU4		
ALT (")	AZ (")							
5.4	8.7	5.9	7.2	7.4	6.8	4.2	7.3	
-24.3	-8.8	-23.2	-9.2	-25.3	-7.7	-22.7	-8.8	
-7.6	-6.1	-9.9	-4.4	-11.5	-5.1	-6.7	-4.0	

Pointing Models

LGSU2 POINTING MODEL ALTITUDE

LGSU1 POINTING MODEL AZIMUTH -140 y = -4.741576526E-05x³ + 8.217143937E-03x² - 3.158371577E-01x - 1.489069312E+02 -145 FLEXURE INDUCED OFFSET (ARCSEC) 🔹 Nas A 🛛 🔺 Nas B -160 50 60 70 80 90 30 40 UT4 ALT (DEG)

Summary Open Loop Pointing

- □ With the support of the LPC, open loop pointing is in spec
- We have verified that LPC can operate also at extreme fields (cluster, empty fields, extended objects in the background). Eta-Car exception.
- □ The pointing models are different between the lower and the upper LGSUs
- Difference between the Nas A and Nas B pointing models (UT4-M3 flexures)
- □ The UT4-M1 glitches affecting the PM can be overcome by procedures with LPC

LGS Return Flux

- □ TLR 7: LGS Return Flux in specification (7.7 Mphot/m²/s at Zenith, Na 4x10¹³ /m²)
- Always in spec. Sodium abundance has changed a lot during the runs
- Photometry calculation under review, do not expect big changes of the results

LGS Return Flux (2)

Data will be placed on polar plots to see also the AZ dependence

YEARS 1962-2012

Paranal LGS Return Flux (April and June runs)

LGS FWHM

• TLR8 - for seeing 0.6": LGS 1.0"; for 1" seeing, LGS fwhm = 1.35

	LGSU1					LGSU2					
ALT	LGS		NGS	Ratio Mesosphe			LGS		NGS	Ratio	Mesosphere
	fwhm S	fwhm L	fwhm	lgs/ngs fwhm	spot size		fwhm S	fwhm L	fwhm	lgs/ngs fwhm	spot size
83	0.94	1.54	0.59	1.59	0.67		0.85	1.48	0.59	1.45	0.60
79	1.09	1.65	0.60	1.82	0.77		1.07	1.57	0.47	2.26	0.75
73	1.21	1.94	0.48	2.53	0.86		0.98	1.50	0.46	2.15	0.70
68	1.13	1.68	0.66	1.70	0.80		0.96	1.47	0.51	1.87	0.68
51	1.11	1.47	0.76	1.47	0.79		1.06	1.46	0.54	1.97	0.75
38	1.21	1.50	0.61	1.96	0.85		0.93	1.28	0.65	1.44	0.66
							Q				
	LGSU3				5	LGSU4					
ALT	LGS NGS		NGS	Ratio	Mesosphere		LGS NGS Ratio			Ratio	Mesosphere
	fwhm S	fwhm L	fwhm	lgs/ngs fwhm	spot size		fwhm S	fwhm L	fwhm	lgs/ngs fwhm	spot size
83	0.97	1.54	0.38	2.51	0.68		0.94	1.57	0.38	2.46	0.67
79	0.96	1.53	0.46	2.09	0.68		1.20	1.59	0.58	2.07	0.85
73	0.93	1.53	0.48	1.93	0.66		1.10	1.53	0.48	2.29	0.78
68	1.06	1.48	0.42	2.50	0.75		0.95	1.45	0.42	2.25	0.67
51	0.90	1.29	0.47	1.92	0.64		0.85	1.38	0.53	1.60	0.60
38	1.01	1.43	0.53	1.92	0.72		1.04	1.39	0.45	2.31	0.73

- LGS focus optimized on guider
- 10 measurements averaged
- NGS and LGS exposure time 0.2s
- OK, in spec. Matches Ron's simulations

MPIA Heidelberg 2017

LGS FWHM

		fwhmx (px)	fwhmy (px)	fwhmx (")	fwhmy (")	NGS fwhm (")	BEU	ALT	AZ
SPEC POSITION	LGS1	13.7	8.8	1.507	0.968	0.57	-5194	ALT 63	AZ 154
with TCS	LGS2	15.1	9.5	1.661	1.045		66313		
Optimization	LGS3	14.6	9.8	1.606	1.078		34300		
	LGS4	15.1	10	1.661	1.1		41459		

MPIA Heidelberg 2017

Summary Main Commissioning Results

- Wavelength calibration of the lasers: OK
- Nigthtime cooling and surface Temp: OK, passed.
- AAS handling between 4LGSF/LGSF OK. Check on mask loading to be implemented
- LGS pointing: within ALT range 30-85 deg, NasA, NasB <2.5" radius in spec
- LPC properly working also in very empty fields, galaxy backgrounds, clusters and galaxies. Only very bright, extended objects created difficulty if close to one LGS.
- LGSF Fwhm in specification 0.6" seeing at 30 deg Zenith.
- LGS Return Flux in specification [range 7-21 Mphot/m²/s (>45 Mphot/m²/s one night !)]

MPIA Heidelberg 2017

Laser Guide Star Systems R&D: experiments toward future LGS-AO systems

ESO: D.Bonaccini Calia, I.Guidolin, T.Pfrommer, R.Holzlöhner, , S.Lewis, W.Hackenberg, E.Marchetti. P-Y Madec IAC: M.Reyes Garcia Talavera, I.Montilla GTC: G.Lombardi INAF-QAR + Arcetri: M.Centrone, S.Esposito, E.Pinna LESIA Obs. Paris: G.Rousset, E.Gendron, L.Bardou, F.Vidal, T.Buey Durham University: T. Morris, A.Badsen, J.Osborne LZT: P.Hickson MPE: S.Rabien

The ESO 'Wendelstein' transportable laser guide star is an experimental unit used for field experiments on LGS Systems R&D, together with the ESO community

The 20W CW, 589nm laser is based on the RFA technology, also present in the AOF/4LGSF Toptica laser

- WLGSU
- Experiments done
- Experiments ongoing
- Outlook and planned future experiments

Wendelstein Laser Guide Star Unit

with a 20W cw 589nm laser, RFA technology

- Experimental 20W LGSU assembled at ESO by LGS group with industry support
- Extensively tested during AIV (burn-in, spectrum, beam quality, environmental loads, polarization)
- Commissioned at AVSO (Ottobeuren)
- So far in total of ~4000 hours laser operation
- Used in joint strategic experiments

See SPIE Proc 8450, 2012, doi:10.1117/12.926898 Subsystems from: Toptica, MPBC, Astelco, Sill Optics

Courtesy M.Kornmesser

Launch Telescope: Astelco on OTA

WLGSU

Find OPTIMAL LASER FORMAT vs ALT, AZ. Find RF Vary laser parameters

- Linewidth
- Polarization (
- D2b intensity
- Power at 589nm
- D2b frequency _____
- (6-32 MHz)
 - (lin ver,hor,+45,-45, circular)
- (0–30%)
- (2.5–20 W)
- (1673–1753 MHz)

- LT 350mm diameter
- LGS Pointing error: ±2"
- Rx 40cm, with SBIG XT10
- OB observing blocks
- Data Pipeline

WLGSU on the Canary Islands

Roque de los Muchachos, WHT 2016-2021

Observatorio de El Teide 2015-16

Daniel López / IAC

Now WLGSU is at ORM WHT

Rationale and tests chosen

- R&D on LGS-AO technologies, toward mature LGS-AO systems for our telescopes
- Can we derive online from each LGS of the EELT the corresponding sodium profile, at 0.5Hz rate?
- Which is the best laser format for the LGS return flux? (Holzlöhner et al., 2010, Bonaccini et al 2016).
- 3. Is the 22W Toptica laser meeting also the EELT LGS RF specifications? (7.6Mph/s/m2 at Zenith)
- LGS-AO for the EELT: field test of adaptive optics with a "cigar LOS (2016-201)
- 5. LGS-AO for the visible on 8m: field tests using a Pyramid WFS and pulsed lasers for spot tracking.

- Unique situation in Europe, expertise and know now distributed
- Sinergies, resources and efforts combined from different member states institutes: ESO, IAC/GTC (ES), INAF (I), Durham Univ (UK), LESIA (F), MPE (D).
- Tests done at the LZT and then at the Canary Islands observatories, OT and ORM

Derivation of Sodium Profile from MHz modulation of CW laser (LZT, ESO)

TEST DONE - DATA BEING REDUCED

Best Laser Format ? (ESO, IAC/GTC, INAF) RF Observations at OT - LGS Photometry

Acquire LGS Photometry Use OB observing blocks **Use Data Pipeline**

Done, ESO internal report pending Model results from Holzlöhner et al. (A&A, 2010)

OT Measured Return Fluxes - Done

VLT Measured Return Fluxes (Commissioning April-Dec 2016)

- Toptica 22W laser on 4LGSF/AOF
- Seasonal sodium variation included
- Sodium abundance can vary by factor 5
- Altitude variation of return flux, ~3
- Paranal measurements with only one laser format (D_{2b} 10%, circular polarization)

MPIA Heidelberg 2017

LGS-AO with 20W CW laser, EELT elongated LGS – ONGOING Canary phase D + WLGSU (Durham, Lesia, ESO, IAC, INAF) Effect of Sodium variability and spot elongation on Wavefront reconstruction

- Performance of LGS-WFS with elongated LGS and real sodium layer
- Record simultaneously NGS and LGS WFS data, 150Hz.
- Open loop and Closed loop. LGS and NGS superimposed.
- Use Na profile measured at 150 Hz to remove sodium height variability
- Vary LGS cigar elongation by changing pointing directions
- Turbulence profile from 3 WFS on NGS asterism.

GEOMETRY SERVER, to point all telescopes together, store data, LTCS

CANARY BENCH

Canary LGS WFS

- ► Camera: OCAM
 - ► 240x240 pixels
 - ► RON < $0.2e^{-1}$ rms/pixels
- \succ WFS :
 - ► 7x7 subapertures
 - ► 30x30 pixels/subaperture
 - ► 0.65" pixel FOV
 - ► FOV :19.5"
 - ► Field stop : 39"

23:20 Phase D Observing Blocks Good Seeing (17th September 2016) Each dataset contains a number of 10s bursts of pixel and WFS slope data from all WFSs. Sodium profiles from the INT are also grabbed and if the AO loop is engaged, IR (H-band) images should also be recorded. NOTE: The tomographic dataset taken at the beginning of the OB does not include pixel data. 2x tt mirrors, 1DM, 4 NGS WFS, **File Prefix File suffix** Description 1 LGS WFS Tomographic dataset (10000 frames) datatomo No specific suffix loopOFF all open 5 x All loops open datacluster All data saved (slopes, pixels, 5 x Closed loop on Truth Sensor (DM gain 0.2, TT gain 0.2, loopON TS eng datacluster LSM gain 0.2) commands) including calibrations *** Take reference slopes on LGS WFS with TS loop refslopes No specific suffix closed *** 5 x Closed loop on LGS WFS with NGS tip/tilt/focus (DM datacluster loopON_LGS_eng gain 0.2, TT gain 0.2, LSM gain 0.2) 🔆 Applications Places System mannaman 5 x All loops open datac rtcPxlBuf [main, cam2.canary.local] rtcPxlBuf [main. cam2.canary.lo rtcPxlBuf [main, cam2.canary.local] 5 x Bzz NGSTT modulated (amplitude 0.3V with 20 datacl frames open loop) 5 x All loops open datacl 5 x Closed loop on Truth Sensor (NGSTT loop only with a datacl gain of 0.2) 5 x All loops open datacl 5 x Bzz NGSTT modulated (amplitude 0.3V with 20 datacl frames open loop) 5 x All loops open datacl Camera ! - Data processing starts rtcActuatorBuf [main, cam2.canary.local] - INAF-OAR helps - 4Tb from 4 nights

rtcCalPxlBufBinnerf0t-1x1y256j256

💼 rtcCalPxlBufBinne 💷 🖂 🛪

Screenshot160728 223330.png

- Open loop data for all
- Marchetti: truncation of LGS
- DBC: LGS Tilt
- Next run 1-6 June 2017 + 3Q17

MPIA Heidelberg 2017

👕 rtcPxlBufBinnerf0t-1x10y10j2560fTailBu 💷 📼 🗴 💻

rtcCalPxlBuf [main, cam2.canary.local]

First paper published Mon.Not.RAS (Jan 2017):

On sky demonstration matched filters for wavefront measurements using ELT-scale Elongated LGS https://doi.org/10.1093/mnras/stx062

Next:

LGS-AO for the visible on 8m: field tests using a Pyramid WFS and pulsed lasers for spot tracking (2018-2021) Canary + WLGSU (Durham, Lesia, ESO, IAC, INAF, MPE)

Progressive test of 4 strategic technologies for future LGS-AO systems.

Elimination of the LGS spot elongation.

Each institute responsible for ist own subsystem, to be installed at the WHT or WLGSU

Experiment Coordination: ESO and Durham

- Uplink laser beam correction to shrink the LGS (Durham, IAC, INAF) in 2018
- Use of pulsed lasers for spot tracking (ESO, modification of the WLGSU laser) in 2019
- Downlink dynamic refocusing (MPE) in 2019
- Pyramid WFS on LGS (INAF, LESIA) in 2020-2021

Activity kick-off: Feb 21st 2017

MPIA Heidelberg 2017

Vielen Dank! - Thank you! Let's work together - <u>Science</u> first!

