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• Gravitational Wave Detectors
• Ground-based observatories
• Space-based observatories: LISA
• LISA Pathfinder

• Earth Observation
• GRACE / GRACE follow-on
• Collaborative Research Center:
• geo-Q Relativistic geodesy and gravimetry

• Novel Optomechanical Technologies
• Concept and overview of results
• Accelerometers
• Gravimeters and Gradiometers
• Micro-optical motion sensors
• Optomechanical Laser: tunable external cavity, THz source
• Force sensors

Outline



• 1916. Albert Einstein proposed a new model 
for Gravitation: General Theory of Relativity.

• Mass determines spacetime curvature.
• Curvature determines the movement of the 

masses.
• Accelerated masses  Gravitational Waves.

• Current astronomy is based on detection of 
electromagnetic radiation.

• Multimessenger Astronomy starting now!

• Gravitational waves: different source of 
information

• Early universe
• Cosmological objects
• Dark phenomena  no EM radiation

Gravitational Radiation



• Gravitational waves change distances 
between floating test-masses as they 
propagate.

• Interferometers monitor the distance 
between test masses  ideal GW detectors.

Gravitational Wave Observatories



Gravitational Wave Observatories
World Wide Network



Gravitational Wave Observatories

LIGO Sensitivity



Gravitational Wave Observatories

LIGO Sensitivity

ℎ 𝑓𝑓 =
𝛿𝛿𝛿𝛿 𝑓𝑓
𝐿𝐿

 𝛿𝛿𝛿𝛿 ≈ 10− 20 m/ √Hz



Gravitational Wave Observatories
GW 150914



Gravitational Wave Observatories
LIGO observations



• Observations below 1 Hz
• Observe evolution of systems
• Sources not accessible to ground-based detectors
• Earth’s seismic noise dominates below few Hz

• More continuous sources at low
frequencies.

• Observations a low frequencies benefit
from larger detector armlengths.

Space-based Observatories - LISA



Observatories – complementary observations bands



• Gravitational Wave Observatory in Space.

• Observation bandwidth: 10-4 – 10-1 Hz .

• Interferometer armlength: millions of km.

• Heliocentric orbit.

LISA: Laser Interferometer Space Antenna



• Three spacecraft in quasi-
equilateral triangle formation

• Trailing Earth around the
Sun by approximately 20o

• Armlengths of few million km
+/- ~ 1%

LISA Orbit



• Emitted beam:
• ~40 cm diameter
• 1 W optical power

• Received beam:
• ~20 km diameter
• 100 pW optical power

LISA optical bench and gravitational sensor



• Emitted beam:
• ~40 cm diameter
• 1 W optical power

• Received beam:
• ~20 km diameter
• 100 pW optical power

LISA optical bench and gravitational sensor

Challenges:

• Test mass acceleration noise: 3 × 10− 15 ms− 2/ √Hz

• Interferometry at pm/ √Hz levels with free-flying object
• Spacecraft actuators with µN thrust

LISA Pathfinder



LISA Pathfinder

• Two LISA-like TMs inside one satellite
• ⇒ one small ”LISA-arm”:

• Interferometry between Test-Masses
with picometer precision.

• Drag Free System for Test Masses
with femtonewton stability.

• Micronewton thrusters for drag free
control of the satellite.

• Two experiments:
• One European – LTP
• One American – DRS/ST7



Disturbance Reduction System (DRS)

Felipe Guzmán LISA Pathfinder

• Colloidal µN-thrusters
• Computer with control laws for drag-free



LISA Technology Package (LTP)

Felipe Guzmán LISA Pathfinder



LISA Technology Package (LTP)

Felipe Guzmán LISA Pathfinder

• Drag-free test masses.



LISA Technology Package (LTP)
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• Drag-free test masses.

• Cold gas (N2) µN-thrusters.



LISA Technology Package (LTP)

Felipe Guzmán LISA Pathfinder

• Drag-free test masses.

• Cold gas (N2) µN-thrusters.

• Laser interferometers between free floating test masses.



LTP Laser

Felipe Guzmán LISA Pathfinder



Felipe Guzmán LISA Pathfinder

LISA Pathfinder Interferometry

• Optical bench:
Zerodur baseplate with 4 non-polarizing
Mach-Zehnder interferometers

• Modulation Bench:
2 AOMs at nearly 80 MHz and 
PZT phase actuators



LISA Pathfinder Interferometry

• X12 interferometer:

Measures relative separation 
and orientation between test 
masses.



LISA Pathfinder Interferometry

• X1 interferometer:

Measures displacement and 
orientation of test mass 1 wrt. 
optical bench.



LISA Pathfinder Interferometry

• Reference interferometer:

Measures common-mode 
noise from modulation bench 
and fibers to correct other 
interferometers.



LISA Pathfinder Interferometry

• Frequency interferometer:

Unequal armlengths to 
measure the laser frequency 
noise and stabilize it.



LISA Pathfinder Interferometry – Performance on ground 



LISA Pathfinder Interferometry – Performance in orbit 



LISA Pathfinder Interferometry – Performance in orbit 



LISA Pathfinder Interferometry – Performance in orbit 



LISA Pathfinder

• Two LISA-like TMs inside one satellite
• ⇒ one small ”LISA-arm”:

 Interferometry between Test-
Masses with picometer precision.

 Drag Free System for Test Masses
with femtonewton stability.

 Micronewton thrusters for drag free
control of the satellite.

• Two experiments:
• One European – LTP
• One American – DRS/ST7

LISA relevant aspects not tested in LISA Pathfinder:

• Long baseline intersatellite laser interferometry with low power
• µ-Cycle phase measurement with a continuously doppler shifting beat note
• Constellation acquisition

GRACE follow-on



GRACE: Gravity Recovery and Climate Experiment



GRACE: Gravity Recovery and Climate Experiment

• GRACE was launched in 2002.

• Nominal orbit: 483 – 508 km, separation: 200 km

• Originally designed for 5 year nominal lifetime.

• Since 2012 in slowly decaying orbit:
• currently at approximately 350 km



GRACE: Gravity Recovery and Climate Experiment

• GRACE was launched in 2002.

• Nominal orbit: 483 – 508 km, separation: 200 km

• Originally designed for 5 year nominal lifetime.

• Since 2012 in slowly decaying orbit:
• currently at approximately 350 km



GRACE follow-on

• Planned launch date: December 2017

• Nearly identical to GRACE
• Main focus is to provide continuity of data to

science community.
• Minor improvements:

• Star trackers
• Slightly better accelerometers

• Laser ranging interferometer
• Technology demonstration payload
• Race-track configuration
• Similarities to LISA:

• Received optical power: ~100 pW
• Doppler shifting beat note
• Laser frequency stability

(first LISA stage)



GRACE follow-on

• Planned launch date: December 2017

• Nearly identical to GRACE
• Main focus is to provide continuity of data to

science community.
• Minor improvements:

• Star trackers
• Slightly better accelerometers

• Laser ranging interferometer
• Technology demonstration payload
• Race-track configuration
• Similarities to LISA:

• Received optical power: ~100 pW
• Doppler shifting beat note
• Laser frequency stability

(first LISA stage)
HOWEVER: required sensitivity is
a few orders of magnitude less
demanding than LISA.



Novel optomechanical technologies for 
gravitational physics and inertial sensing

Gravimeters & Gradiometers

Micro-optical motion sensors

Self-referenced force sensorsAn Optomechanical Laser



• Acceleration  test mass displacement 
• Linear uniaxial motion

• Two parameters:
• natural frequency 
• mechanical quality factor

• SI frequency standard traceability

• Optical length changes  reflected power changes

Fabry-Pérot cavity

Mechanical oscillator

• Absolute optical length measurement:
Free Spectral Range (FSR): distance between resonances 

𝑳𝑳 =
𝒄𝒄

𝟐𝟐 𝑭𝑭𝑭𝑭𝑭𝑭

• Linearization:
• Three parameters:

• cavity length
• laser wavelength  
• derivative of reflectivity wrt. wavelength

• SI wavelength standard traceability

Optomechanical accelerometer concept



Optomechanical accelerometer prototype
Mechanical oscillator – Q measured: 4 × 106

• Monolithic fused-silica flexure
Optical sensor
• Fabry-Pérot fiber micro-cavities of low and high finesse
• Cavity lengths of 40-200 µm | FSR at THz frequencies

displacement resolution: 10-16m/√Hz

high finesse: > 1500

• plano-plano uncoated flatly
cleaved fibers

• plano-concave dielectric and
metalized fiber mirrors

• plano and laser-ablated
concave fiber mirrors with
HR dielectric coatings

acceleration resolution: < 100 ng/√Hz Allan variance - 10-5g over 100s

low finesse: 2-100

* Felipe Guzmán Cervantes, et al,  High  sensitivity optomechanical reference accelerometer over 10 kHz, Applied Physics Letters 104 (22), 221111 (2014).
Felipe Guzmán Cervantes , et al, Optomechanical motion sensors. American Society of Precision Engineering, Conference on Precision Interferometry, 2015.

Felipe Guzmán Cervantes , et al , MEMS optomechanical accelerometry standards. American Society of Precision Engineering, Conference on Precision Interferometry, 2015.
Yiliang Bao, Felipe Guzmán, et al. An optomechanical accelerometer with a high-finesse hemispherical optical cavity. IEEE Symposium on Inertial Sensors and Systems, 2016.
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Displacement detection
99.9992% 99.7%

Laser ablated
Dielectric coating
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Low noise 
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Visibility  ≈



Felipe Guzmán Cervantes, et al,  High  sensitivity optomechanical reference accelerometer over 10 kHz, Applied Physics Letters 104 (22), 221111 (2014).
Felipe Guzmán Cervantes , et al, Optomechanical motion sensors. American Society of Precision Engineering, Conference on Precision Interferometry, 2015.

Felipe Guzmán Cervantes , et al , MEMS optomechanical accelerometry standards. American Society of Precision Engineering, Conference on Precision Interferometry, 2015.
Yiliang Bao, Felipe Guzmán, et al. An optomechanical accelerometer with a high-finesse hemispherical optical cavity. IEEE Symposium on Inertial Sensors and Systems, 2016.

Optomechanical accelerometer - setup
• PZT tunes side-flexure cavities over a full fringe:

• Cavities approximately 70µm +/- 0.5 µm
• FSR: 2 THz, finesse: 1000, linewidth: 2 GHz
• Range approx. 1.7 µm (more than one fringe)

• Dual cavity readout – common-mode laser noise cancellation
• Single cavity reaching 70 am/√Hz at high frequencies. 10 fm/√Hz @ 1 Hz. 

• Laser, fiber-optic light distribution & modulators:
• Laboratory grade equipment utilized so far.
• Highly compact equivalent COTS components available.
• Performance with COTS to be tested.

• Vibration isolation platform required for gravity and inertial sensing.



• Ideal for space applications
• Compatible materials and simple robust geometry
• Cost-effective, small and light weight
• Redundancy: dual test mass approach
• Tunable performance space through smart and simple geometry

• Applications
• Geodesy, Gravimetry, seismometry, structural analysis and

control, quantum & fundamental physics, Inertial Navigation

• Performance limit �𝛿𝛿𝛿𝛿
𝑆𝑆𝑆𝑆𝑆𝑆

= 4𝑘𝑘𝐵𝐵𝑇𝑇𝜔𝜔𝑜𝑜
𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒 𝑄𝑄

• Lower resonance frequency 𝛿𝛿𝛿𝛿 = 𝜔𝜔𝑜𝑜2 �𝛿𝛿𝑥𝑥
displacement
noise density

• Low stiffness flexures
• Readout with large dynamic range (> 𝜆𝜆)
• Active test mass control / force rebalancing

• Test mass: 10-3 kg, Q: 2000, fo=10 Hz
• Dual test mass approach - redundancy
• Total sensor mass: < 30 g

• Current acceleration sensitivity limit:
7× 10− 10 ms− 2/ √Hz

𝑥𝑥 𝜔𝜔
𝑎𝑎 𝜔𝜔

= −
1

𝜔𝜔𝑜𝑜2 − 𝜔𝜔2 + 𝑖𝑖𝜔𝜔𝑜𝑜
𝑄𝑄 𝜔𝜔

free-running Fabry-Pérot low-finesse fiber interfometer

Provisional Patent US 62/355,208: F. Guzmán, L. Kumanchik, J. R. Pratt, J. M. Taylor, PS-2016-095, 2016 Provisional Patent US 62/355,210: F. Guzmán, PS-2016-096, 2016

Optomechanical Gravimeters



Optomechanical accelerometer – primary standard

• National Metrology Institutes (NMI) state-of-the-art 
acceleration metrology

– Comparison measurements against primary standards demonstrate NMI grade 
accuracies at levels of 10-3—10-2. 

reference gold mirror



Micro-optical motion sensors
• Low-finesse limit: bare glass 4% reflectivity

• Nearly sinusoidal response

• Extremely large FSRs ~ THz

• Enable absolute distance and displacement measurements

• DC read out sensitive to a few fm/√Hz

• Mechanical modulation:
• AC read out and servo technique
• Provides error signal for cavity and laser control
• Signal in quadrature from demodulation
• Signals in quadrature for tracking over several fringes

• Preliminary tests show sensitivities of:
40-80 pm/√Hz @ 10s mHz – 10s kHz

Felipe Guzmán Cervantes , et al, Optomechanical motion sensors. American Society of Precision Engineering, Conference on Precision Interferometry, 2015.



An Optomechanical Laser
Displacement to Frequency conversion

• VECSEL - Vertical-External-Cavity Surface-Emitting Laser:
• Consists of surface-emitting chip (“half of a VCSEL”)
• External mirror to complete laser cavity
• Single-mode and Mode-locked operations possible
• Optical pumping possible for high lasing power: > 10 W
• Electrical pumping possible as well, lower optical output power

• Dynamics to Frequency transduction:
• Dynamics: displacement, acceleration, force,

inertial field and gravitational potential.
• Test mass displacement  lasing cavity length changes
• Test mass motion changes lasing frequency/wavelength
• Mode-locked FSR / mode-beating absolute measurement of cavity length
• Absolute displacement measurements by using

true frequency standards and their accuracies

• Frequency combs THz down conversion:
• Short cavities yield a coherent photonic THz source
• Reference laser frequency combs
• Compact and portable fiber combs

Provisional Patent US 62/355,215: F. Guzmán, J. R. Pratt, J. M. Taylor, PS-2016-097, 2016



Thank you
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