Visualization in Astronomy Astro Tech Talk MPIA, 12.05.2017

Thomas Müller Haus der Astronomie (MPIA) Email: tmueller@mpia.de

Data in Astronomy

- Images
 - @ different wavelengths, Hubble, Spitzer, VLT,...
 (360° 20-Gigapixel image of New York, http://360gigapixels.com/nyc-skyline-photo-panorama)
- Spectral data
 - Integral field spectroscopy
- Point data sets
 - Hipparcos, Gaia (DR1: TGAS-sources: 2,057,050; DR2: > 2 Billion)
- Volume data sets
 - from numerical simulations: Illustris-Dark1 ($1820^3 = 6,028,568,000$)

Haus der Astronomie

Model: ZEISS powerdome VELVET Dome diameter: 12m tilted by 30°

5 projectors: 1920×1200 Nvidia Geforce GTX 560 (11,520,000 pixels) Image of "Haus der Astronomie" Image licence is not clear

Haus der Astronomie

Model: ZEISS powerdome VELVET Dome diameter: 12m tilted by 30°

5 projectors: 1920×1200 Nvidia Geforce GTX 560

Domemaster: 3072×3072 (max 30 fps)

THOR image (H. Beuter et al.)

Scale to 360 x 18.9; Cubemap camera: 90 $^{\circ}$ field of view

THOR image (H. Beuter et al.) Better: scale to 720 x 37.8

Map Cubemap to DomeMaster

6

Insertion: OpenGL graphics pipeline

Interactive rendering using OpenGL vertex and fragment shader

- draw quad using two rectangles
- for each fragment of the quad do...
 - determine $(\vartheta, \varphi) \mapsto \vec{d} = (\sin \vartheta \cos \varphi, \sin \vartheta \sin \varphi, \cos \vartheta)$

THOR image (H. Beuter et al.)

Better: scale to 720 x 37.8

Map Cubemap to DomeMaster

PanSTARRS image covers only 3π

(Panoramic Survey Telescope And Rapid Response System;1.8m telescope with 1.4 Gpix camera; map sky in 5 broadband filters)

Mollweide to Domemaster

PanSTARRS image covers only 3π

(Panoramic Survey Telescope And Rapid Response System; 1.8m telescope with 1.4 Gpix camera; map sky in 5 broadband filters)

Mollweide to Domemaster

https://panstarrs.stsci.edu/

 2π

HEALPix to Domemaster

(Hierarchical Equal Area isoLatitude Pixelization)

Image source: http://healpix.sourceforge.net/

Image source: NASA / WMAP Science Team

Zoom into image via sphere-to-sphere mapping:

Zoom into image via special relativistic aberration

 $\cos\theta = \frac{\cos\vartheta + \beta}{1 + \beta\cos\vartheta}$

 $\beta = 0$ $\beta = 0.5$

 $\beta = 0.9 \qquad \qquad \beta = 0.99$

Very large images

Generate hierarchical image pyramid; caching and preloading

LOD 0		1024 imes 1024
LOD 1		total: 2048 $ imes$ 2048
LOD 2		total: 4096 $ imes$ 4096
LOD 3	Image licence is not clear	total: 8192 $ imes$ 8192

Line-of-sight integration

Maximum-Intensity-Projection

Isosurface with Phong-Illumination

For each ray:

- find scalar value $\phi = \phi_{iso} \Rightarrow P = (x, y, z)$
- calculate gradient $\nabla \phi$ at point P
- calculate angle between gradient and direction of light source
- Phong shading based on ambient, diffuse and specular light

Disadvantage: isosurface is opaque

VolumeVis with Transferfunction

Transferfunction maps scalar value to color and opacity

Challenges:

- data sets become very large: do not longer fit into GPU memory
- out-of-core rendering techniques
- dynamic data sets become e.g. too complex to select isosurfaces manually
- visualization of multivariate data: 3D vector or tensor fields
- more advanced transfer functions (2D: scalar + gradient)
- ..

Particle rendering using single vertices.

Particle rendering using small spheres:

- approximated by triangle mesh; too many geometry!
- slow

Particle rendering using billboards (camera oriented, shaded quad)

• very fast

Particle rendering using billboards (camera oriented, shaded quad)

• very fast

Particle rendering using billboards

• Blending \rightarrow depth sorting (very expensive)

Star rendering using billboards (only white)

Star rendering using billboards (colored stars)

Star rendering using billboards (colored stars)

Star rendering using billboards (geometry correction)

RRLyrae stars from PanSTARRS (work in progress)

Visualization of RRLyrae stars (H.W. Rix)

- about 44000 stars
- Star sizes depend on distance to observer
- Star brightness decreases by distance and are faded to full transparent
- Sorting on CPU; better on GPU

Vector fields $\vec{x} \mapsto \vec{\sigma}(\vec{x}) \ \forall \vec{x} \in \mathbb{D}$

- Every arrow indicates the vector $\vec{\sigma}$ at \vec{x} .
- $\vec{\sigma}$ can be normalized.
- critical points are difficult to determine

Vector fields $\vec{x} \mapsto \vec{\sigma}(\vec{x}) \ \forall \vec{x} \in \mathbb{D}$

- Stream lines are integral lines along the vector field $\vec{\sigma}$
- Stream line placement is important!

Line integral convolution (LIC)

⇒ strong correlation along vector field; no correlation perpendicular

Visualization of vector fields (work in progress)

Line integral convolution on spheres

- Integrate along surface of sphere
- implement in CUDA
- calculate LIC before mapping

Planck data / polarization

Visualization of polarization data of Planck data (Juan Soler)

Planck data / polarization

Visualization of polarization data of Planck data (Juan Soler)

IGM Tomography (ongoing work)

High quality volume vis of IGM Tomography (K.G. Lee, Joe Hennawi)

• Volume data set (Cartesian grid, 680 x 48 x 36)

K.G. Lee et al, "LYalpha Forest Tomograpy from background galaxies: The first megaparsec-resolution large-scale structure map at z > 2" ApJL 795:L12 (2014)

IGM Tomography (ongoing work)

High quality volume vis of IGM Tomography (K.G. Lee, Joe Hennawi)

• Volume data set (Cartesian grid, 680 x 48 x 36)

IGM Tomography (ongoing work)

High quality volume vis of IGM Tomography (K.G. Lee, Joe Hennawi)

• Volume data set (Cartesian grid, 680 x 48 x 36)

VolVis with own framework (OGLView)

Gauss curve TF editor for isosurfaces

Filamentary structures in the interstellar medium

Volume vis of filamentary structures in the ISM (Jouni Kainulainen)

Cartesian grid 1024 x 581 x 581

MIP-rendering

Core collapse supernova (work in progress)

Volume vis of supernova simulation (A. Summa, T. Melson, MPA)

• Volume data set (spherical grid, 358 x 186 x 522)

Aims:

- improve rendering performance, develop improved rendering techniques for spherical grids (OGLView: 1 sec @ 800 x 800 pixels)
- lower res during mouse interaction
- improve rendering quality (rendering artifacts due to undersampling, high freqs)
- improve visual depth perception (e.g. with ambient occlusion)

Core collapse supernova (work in progress)

Volume vis of supernova simulation (A. Summa, T. Melson, MPA)

Gaussian functions (log-plot)

Core collapse supernova (work in progress)

Improve visual depth perception (with different shading techniques)

Supernova simulation

- a) Standard emissionabsorption model
- b) Volumetric ambient occlusion
- c) Ambient scattering with light source

Ament et al., "Ambient Volume Scattering", IEEE Transactions on Visualization and Computer Graphics 19, Issue 12 (2013)

Density structure of the CGM

Hierarchical cloud data visualization (Jonathan Stern, Joe Hennawi)

Hierarchical cloud data of circum galactic medium

^{*} http://www2.mpia-hd.mpg.de/homes/stern/CGM.html

Density structure of the CGM

Hierarchical cloud data visualization (Jonathan Stern, Joe Hennawi)

- Hierarchical cloud data
- Sampling on 1024 x 1024 x 1024, + VolVis
 1024 pix = 560,000 pc
 0.02 pix = 11 pc (L4)
- Develop new rendering technique based on
 - view frustum culling
 - hierarchical loading (clouds largen than 1 pixel)
 - calculate sphere intersections
 - sort intersections for correct blending
 - ray casting with early ray termination

^{*} http://www2.mpia-hd.mpg.de/homes/stern/CGM.html

Density structure of the CGM

Hierarchical cloud data visualization (Jonathan Stern, Joe Hennawi)

Rendering performance:

40 fps @ 400 x 300 pixels 10 fps @ 1280 x 960 pixels

Annotations and movie editing with Adobe AfterEffects

Vorticity visualization (work in progress)

Vorticity visualization (Hubert Klahr) of high resolution data: pluto code:

(density, vr, vt, vp, prs) @ 1024 x 512 x 256, spherical grid

• Vorticity:

$$\vec{\omega} = \vec{\nabla} \times \vec{v}$$

- Develop vortex detection algorithms for planetary disks
- Student project (Ramin Safarpour, master thesis) in cooperation with IWR (F. Sadlo)

Planetesimal development (work in progress)

Visualization of planetesimal development (Patrick Quicker (student apprentice), Andreas Schreiber)

- 2D particle simulation
- periodic boundary conditions in phi-direction; shear-periodic boundary conditions in radial-direction
- track planetesimal
- 3d-stack (x,y + time)

Planetesimal development (work in progress)

Visualization of planetesimal development (Patrick Quicker (student apprentice), Andreas Schreiber)

Planetesimal development (work in progress)

Visualization of planetesimal development

Fulldome exoplanet orrery (Bachelor thesis)

Charged particle motion on sphere

Vis for education – interactive apps

Java-App to demonstrate the transit method

Android-App for our Solar System Trail

Vis for education – diagrams

Highly configurable stellar map (python, matplotlib)

60

Fulldome Demo