Photonic dicer – Simulation & Optimisation

Credit: Zac Posen dress

Theodoros Anagnos, Heidelberg Haus der Astronomie, 2017

- Basic spectrograph configuration
- What is astrophotonics and fundamentals
- The Photonic Dicer:
 - Modelling Simulations Optimisation
- Conclusions

Example of a spectrograph

Credit: Zac www.scientificamerican.com

Resolving power – throughput relation

$$\mathbf{R} = \frac{\lambda}{\Delta \lambda} = \frac{\mathrm{m}\rho \lambda \mathbf{W}}{\mathbf{\chi} \mathbf{D}_{\mathrm{T}}}$$

- For fixed resolving power R and seeing limited slit width χ , collimated beam W must get larger as telescope D_T does
- Major costs for larger grating and parts
- Fragile
- Solution photonics!

What is Astrophotonics?

+

Credit: http://www.ictxwavemedia.net/

Credit: http://deepastronomy.com/

+

Credit: http://www.azooptics.com/

Photonics + Astronomical instrumentation = Astrophotonics

Fundamentals of Astrophotonics

Single mode – multimode connection

Single mode vs Multimode

Credit: J. P. Lloyd

125 µm

Multimode fiber

Easy coupling of light efficiently

 $50\,\mu m$

Credit: J. P. Lloyd

125 µm

Multimode fiber

Easy coupling of light efficiently

50 µm

Credit: J. P. Lloyd

125 µm

Multimode fiber Easy coupling of light efficiently

| = 2, m = 1

Single mode fiber

Very difficult to couple light efficiently

50 μm

l = 3, m = 1

l = 0, m = 3

1 I=2, m=2 1 I=2, m=2 1 I=1, m=3 1 I=1, m=3

I = 0, m = 2

125 μm

l = 1, m = 1

l = 1, m = 2

l = 5, m = 1

l = 0, m = 1

l = 3, m = 1

l = 0, m = 3

Multimode fiber Easy coupling of light efficiently

| = 2, m = 1

l = 4, m = 1

Single mode fiber

Very difficult to couple light efficiently

- Gaussian intensity profile
- Wavefront flat
- Stable PSF, only amplitude variations

I = 0, m = 2

l = 2, m = 2

The Photonic Lantern

- Low loss conversion between one large core several smaller cores
- If transition is gradual long enough- low loss
- Device is reciprocal, if the number of modes remain the same
- Low demand in AO performance system

Operating in the Single Mode regime

Why?

- Elimination of modal noise in spectrograph
- More precise calibration of measurements
- Exploiting advantages of photonics working in SM

Examples:

Astrophotonic reformatters, multicore fibers, SM fibers!

The Photonic Dicer - an astrophotonic reformatter

Credit: Harris R.J., MacLachlan D.G. et all. 2015

Modelling & results

The Photonic Dicer with spectrographs

Simulations Layout

Simulations Layout

Preliminary Results - Throughput

Harris R.J. & MacLachlan D.G.

Soapy AO + RSoft

Ensquared Energy at 405 mas (%)

Ensquared Energy at 350 mas (%)

	On-sky	Soapy + Rsoft
Closed-Loop (%)	19.5 <u>+</u> 2	17.8 ± 3
Open-Loop (%)	10.5 ± 2	8.4 ± 3
Tip & Tilt (%)	9 <u>+</u> 2	9.6 ± 3

Preliminary Results – AO performance

AO performances not matched!

The Photonic Dicer – coupling of evanescent field

Photonic Dicer Optimisation - transition planes

Photonic Dicer Optimisation - transition planes

Photonic Dicer Optimisation- Geometry of fibers

The Photonic Dicer - modal noise free

Conclusions

- We theoretically test Photonic Dicer
- Preliminary results were strange, but we found an explanation
- We have further optimised using the knowledge
- Soapy and RSoft are powerful tools for modelling astrophotonic devices, useful for future tests

$$R = \frac{\lambda}{\Delta \lambda} = \frac{m\rho \lambda W}{\chi D_{T}}$$

 λ = central wavelength of observation $\Delta\lambda$ = smallest distinguished wavelength difference

m = diffraction order
ρ = grating ruling density (mm -1)
W = length of grating illuminated
χ = seeing
D_T = diameter of telescope

Normalised Frequency / V number

$$V=rac{2\pilpha}{\lambda}\sqrt{n_1^2-n_2^2}=rac{2\pilpha}{\lambda}$$
NA

Number of supported modes

 $M = \sim \frac{4V^2}{\pi^2}$

NA (acceptance angle)

Suggested solutions

Image slicer

- + High throughput
- Modal noise
- Dificult align

Astrophotonic Reformatters

- + Easy to align
- + Elimination of modal noise
- + Free geometry
- Moderate throughput

Credit: Yerolatsitis et al 2016

 OH Background Suppression GNOSIS-PRAXIS AAT

Space Applications

Credit: Montana State University/NASA

Integral field spectroscopy-eg. SAMI AAO

Credit: researchgate.net

• Interferometry

Credit: P. Darré et al., Phys. Rev. Lett. (2016)

• Hexabundle fibres AAT

Credit: sydney.edu.au

Array Waveguide Grating

Credit: sydney.edu.au

• Fibre Bragg gratings

• Fibre Positioning Technology

Credit: Leon-Saval S.G. et al.

