

Joachim Wolf

Institute of Experimental Particle Physics

MPIA, Heidelberg, 02.02.2018

A brief history of neutrinos
Neutrino mass measurement
The KATRIN experiment
Future projects

A brief history of neutrinos

Discovery of the neutrinos

β-decay

1912-1930

Investigation of **radioactive materials**, which emit **electrons**.

+ energy conservation+ momentum conservation

Discovery of the neutrinos

Absolutit/15.12.9 Www.s.Faxing so Tubingen. obmift Himlisches Institut

Wirich Technischen Nochschule

dioaktive Damen und Herren,

Make our Understringer dassen samten, an den haldwallet segreinen sites, hann des subwarn maken, an den haldwallet segreinen sites, hann des subwartet der kund iden utrich, bis ich des kontiniteritaten mar i Satistit der kund iden strikten werkillen und weichenigken? Um die dass wereichtigten sites werkillen und verbenigken? Haldwartet ich die Schlichtet, der bististit und den Bergiesets trichen, Makten die Köglichtet, der bististit und den Bergiesets weiche des signa die Schlichtet, der bististit und den Bergiesets siche des signa die Schlichtet, der bististit und den Bergiesets siche des signa die Schlichtet, der bististit und den Bergiesets siche des signa die Schlichtet, sich und schlichtet des sich siche des signa die Schlichtet, sich und schlichtet des sich sieher all sichtigeneinstig sich Later, sich und sich sich sich sieher all sichtigeneinstig sich Later des Schlichtet des sich sieher all sichtigen die Schlichtet der Annahes, dess bein des, destum und die Same der Bergien und terein des des die Same des Bergien und sichtigen des bein des des die Same des Bergien und sichtigen.

Mun handalt as sich weiter

Ich traus mich vorläufig aber nicht, stwas über diese in publisiaren und wande mich erst verfrusenzvoll an Bach, lief toektive, mit der Fruge, vie es un den experimentellem Mach al grössnere Durcht stände, wenn diesen ein einstellem Mach

Ich gebe zu, dass mein Ausweg vielle

The subrobial of the second state of a second state of the second

1930

Proposal: in addition to the electron another, neutral and very light particle is emitted, sharing the energy.

+ energy conservation+ momentum conservation

Wolfgang Pauli

(1900 - 1958)

Discovery of the neutrinos

1934

Enrico Fermi develops a successful theorie for β -decay, including the neutrino.

1935

Hans Bethe calculates the probability to detect neutrinos. Absorber has to be 10'000'000'000'000'000 m (1000 LJ) thick to stop a neutrino !

1957

Reines & Cowan are the first to detect neutrinos at a nuclear reactor.

Neutrino mass and flavor-oscillation

- Neutrinos come in three flavors: $v_e v_\mu v_\tau$
- Heisenberg: mass and flavor cannot be measured at the same time
- Neutrino properties can assume three Eigenvalues for mass ($v_1 v_2 v_3$) and flavor ($v_e v_\mu v_\tau$)
- Neutrino with a unique flavor: mix of three mass Eigenvalues
- Three mass eigenfunctions with different velocities → phase shift
- v–oscillation along the path of flight
- Oscillation length depends on:
 - $\Delta m^2 = m_{v1}^2 m_{v2}^2$
 - neutrino energy

Flavour fraction

7

Neutrino mass and flavor-oscillation

"for the discovery of neutrino oscillations, which show that neutrinos have mass"

Neutrino oscillations observed:

- solar neutrinos
- atmospheric neutrinos (cosmic rays)
- neutrinos from nuclear reactors
- accellerator neutrinos

- Large neutrino mixing and tiny neutrino masses m(v_i) ≠ 0 established
- v oscillation depends on $\Delta m^2 = m_1^2 m_2^2$
- What is the absolute v mass scale?

The role of massive neutrinos

J. Wolf - KATRIN - the Karlsruhe Tritium Neutrino Experiment

Institute for Experimental Particle Physics

Neutrino mass measurement

TREA

Complementary paths to the v mass scale

the second s

			nn 3H 3He ⁺
	Cosmology	Search for 0vββ	β-decay & electron capture
Observable	$M_{\nu} = \sum_{i} m_{i}$	$m_{etaeta}^2 = \left \sum_i U_{ei}^2 m_i ight ^2$	$m_eta^2 = \sum_i U_{ei} ^2 m_i^2$
Present upper limit	0.12 – 1 eV	0.2-0.4 eV	2 eV
Model dependence	Multi-parameter cosmological model	 Majorana v contributions other than m(v)? nuclear matrix elements 	Direct, only kinematics; no cancellations in incoherent sum → this talk

Karlsruhe Institute of Technolog

Direct kinematic determination of m(ve)

Moore's Law of direct v mass searches

MPIA Heidelberg, 02.02.2018

J. Wolf - KATRIN - the Karlsruhe Tritium Neutrino Experiment

The MAC-E Filter

Magnetic Adiabatic Collimation with Electrostatic Filter

A. Picard et al., NIM B 63 (1992)

spectrometer (MAC-E filter)

The KATRIN experiment

Sensitivity: 2 eV → 0.2 eV

BERGISCHE UNIVERSITÄT

WESTFÄLISCHE Nilhfims-Universität

CHAPPEL HIT

universitätbon

- Improvement x100 in statistics and systematics
- Background comparable to predecessors
- 70 m total beam line

about 150 members from 19 institutions

NNES GUTENBERG

Hochschule Fulda

WASHINGTON

J. Wolf - KATRIN - the Karlsruhe Tritium Neutrino Experiment

ЯN

MR

CASE WESTERN RESERVE

Institute for Experimental Particle Physics

Calibration and monitoring system

KATRIN Source and Transport Section

Source - stringent control of systematic effects:

isotopic purity, gas temperature, gas density, plasma effects

Challenge

- temperature stability on **10**-3 level

- temperature stability on **10**-3 level

Technological development

- novel 2-phase neon cooling system
- required: $\Delta T = \pm 30 \text{ mK} (1 \text{ h})$
- achieved: $\Delta T = \pm 1.5 \text{ mK} (1 \text{ h})$

\rightarrow stability surpassing specifications

with 10⁻³ accuracy in 100 s

Technological development

- calibrated Laser-Raman system for all 6 hydrogen isotopologues
- achieved: < 10⁻³ accuracy in 60 s

Transport and Pumping Section: DPS

Differential Pumping Section (DPS)

- magnetic field:
- active pumping:
- tritium retention:
- 18 TMPs **10⁷**

5.6 T

- tritium ion removal and monitoring
- built at KIT, commissioning 2016/17

- 4 dipole electrodes: drift to wall
- Split-ring electrodes: ion rejection

- Tritium ion monitoring
- FT-ICR: ion trap

(Fourier Transform – Ion Cyclotron Resonance mass spectrometer)

Calibration and monitoring

- Forward beam monitor (retractable photo diode)
- Condensed ^{83m}Kr source (conv. electron peaks)

Risks for turbo-molecular pumps?

Endurance test for TMP with tritium

- tritium can affect non-metal parts of pump
- TMP type: Leybold MAG-W 2800
- tested at Tritium Laboratory Karlsruhe (TLK)
- 398 days operation with tritium
- throughput: 1106 g tritium

TMP in a magnetic field

- eddy currents can over-heat rotor
- high mag. field can slow down rotor
- failure of magnetic bearing
- test setup built at KIT for large TMPs
 math. model developed for prediction

F. Priester, PhD thesis at KIT (2013)

31

Complete dismantling of a MAG W 2800

parts were highly contaminated with tritium, but ...

Image: parts looked like new, no indication of wear, cables and O-rings ok

MPIA Heidelberg, 02.02.2018

Risks for turbo-molecular pumps?

Endurance test for TMP with tritium
tritium can affect non-metal parts of pump
TMP type: Leybold MAG-W 2800
tested at Tritium Laboratory Karlsruhe (TLK)
398 days operation with tritium
throughput: 1106 g tritium

TMP in a magnetic field

- eddy currents can over-heat rotor
- high mag. field can slow down rotor
- failure of magnetic bearing
- test setup built at KIT for large TMPs
- math. model developed for prediction

33

F. Priester, PhD thesis at KIT (2013)

TMP in a magnetic field

- Helmholtz coils: radius = 60 cm
- B-field: 0 50 mT
- coils can be turned by 90°
- pyrometer used for rotor temperature
- gas flow possible
- measures parameters for empirical model

J. Wolf - KATRIN - the Karlsruhe Tritium Neutrino Experiment

The KATRIN

Main Spectrometer

0000

Manufacturing of the Main Spectrometer

KATRIN Main Spectrometer Journey to KIT

MPIA Heidelberg, 02.02.2018

- **MAC-E Filter** principle \rightarrow precise electron energy measurement
 - Vacuum vessel & electrodes on

variable retarding potential (18.6 kV)

- Magnetic guiding field: 0.3 mT 6 T
- High resolution: ΔE = 0.93 eV @ 18.6 keV
- Stainless steel (~200 to, 316LN)

Dimensions:

- diameter: 10 m
- Length: 23 m
- volume: 1240 m³
- inner surface: 1222 m² (including wire electrodes)

arrival at KIT: 26.11.2006

Wire Electrode Installation (2008 – 2012)

248 wire electrodes cover the inner surface of the Main Spectrometer

- 23 440 insulated wires
- ~ 120 000 individual parts
- Installed under cleanroom conditions

Wire Electrode Installation (2008 – 2012)

- 2012: Electrode installation completed
- 2013: bakout at 300°C
- first commissioning runs
 - 2013
 - **2015**
 - 2017/18

Institute for Experimental Particle Physics

KATRIN Main Spectrometer Vacuum

- Roughing pump: 640 m³/h screw-pump
- 6 turbo-molecular pumps (Leybold MAG-W 2800): 10 000 l/s (H₂)
- ² NEG-pumps (3000 m SAES St707 getter strips): ~10⁶ ℓ/s (H₂) 250 000 ℓ/s
- 3 cryogenic LN₂ baffles (radon): ~160 000 l/s (Rn)
- ultimate pressure: 10⁻¹¹ mbar

Coupling of Spectrometer and Detector

X-rays

- Detector de-coupled during bake-out
- Requires valve inside magnet bore
- O-ring partly slipped out during baking
- Challenge: attach detector without saturation of the activated NEG-pump

visual

Coupling of Spectrometer and Detector

274 TA

- Solution: replacing the O-ring under inert gas atmosphere (Ar)
- Gas quality N9.0 required to prevent contamination of NEG

144 bottles Argon N6.0

O-ring exchanged in Ar atmosphere
 beam-line valve now leak tight
 detector section attached

XENON 1t

gas purification system (SAES)

KATRIN - MAC-E filter characteristics

main spectrometer works as high-resolution MAC-E filter:

- sharp transmission function for 18.6 keV e⁻ from e-gun
- width limited by egun emission spectrum
- HV stability on ppm-scale

MPIA Heidelberg, 02.02.2018

Radon as source of background (problem)

- ²¹⁹Rn emanation from St707 NEG getter strips (2000 m) in pump ports
- ²²⁰Rn emanation from stainless steel walls/weldings

J. Wolf - KATRIN - the Karlsruhe Tritium Neutrino Experiment

Radon as source of background (solution)

passive background reduction: LN₂-cooled baffles to cryo-sorb ²¹⁹Rn, ²²⁰Rn

- Reduction of effective NEG pumping speed: 38%
- Reduction of ²¹⁹Rn flow into main vol. : ~ 0.6%
- Reduction of ²²⁰Rn flow into main vol. : ~ 6%

G. Drexlin et al., Vacuum 138 (2017), 165–172

Radon as source of background (solution)

passive background reduction: LN2-cooled baffles to cryo-sorb ²¹⁹Rn, ²²⁰Rn

- Reduction of effective NEG pumping speed: 38%
- Reduction of ²¹⁹Rn flow into main vol. : ~ 0.6%
- Reduction of ²²⁰Rn flow into main vol. : ~ 6%
- Pumping speed for ²¹⁹Rn from walls: 160 000 ℓ/s
- Pumping speed for ²²⁰Rn from walls: 75 000 ℓ/s

G. Drexlin et al., Vacuum 138 (2017), 165–172

Remaining background (0.5 cps) ?

Maar

< 100 meV

²¹⁰Pb decay

H* Rydberg atoms:

- desorbed from walls due to ²⁰⁶Pb recoil ions

 $\Pi \Pi$

- non-trapped electrons on meV-scale
- bg-rate: ~0.5 cps
- positive test with short-lived ²²⁰Rn (²¹²Pb)
- countermeasures (work in progress):
 - reduce H-atoms on surface: extended bake-out → 0.3 cps
 - strong B-field in center (smaller flux tube volume) → 0.2 cps

a (

isotropic bg for longer exposure

KATRIN main spectrometer backgrounds

- Various processes can contribute to the spectrometer background
- Spectrometer backgrounds were investigated in detail during two measurement phases

KATRIN main spectrometer backgrounds

- All previously known background processes are efficiently suppressed
- Background rate about 50 times larger then design value (10 mcps), presumably due to ionization of Rydberg atoms by black body radiation

KATRIN background & sensitivity

- Further background reduction measures under investigation
- In addition: several mitigation strategies
 - optimized scanning
 - energy range of spectral analysis
 - flux tube compression by increasing B

0.50 mT

0.80 mT

KATRIN milestone 2016 – first light

Neutrinos auf der Waage

Am 14. Oktober durchflogen erstmals Elektronen das Experiment KATRIN

MPIA Heidelberg, 02.02.2018

Institute for Experimental Particle Physics

KATRIN – next steps

MPIA Heidelberg, 02.02.2018

The Future of Neutrino Mass Measurements

© ECHo Collaboration cryogenic bolometer with Holmium 163

TRISTAN detector for KATRIN

© Project 8 Collaboration

Cyclotron Resonance Emission Spectroscopy (CRES)

Imprint of sterile neutrinos on β spectrum

Shape modification below E_0 by active $(m_a)^2$ and sterile $(m_s)^2$ neutrinos:

additional kink in β spectrum at E = E₀ - m_s

Why sterile neutrinos?

Both scales accessible in tritium β decay

Well motivated as

Standard Model

(vMSM)

natural extension of

Hints of eV-scale sterile neutrinos? Hints of keV-scale sterile neutrinos?

May explain anomalous oscillation results from

- Short baseline accelerator experiments
- Gallium experiments
- Reactor experiments

[[]M. Kleesiek, PhD thesis (KIT), 2014;

MPIA Heidelberg, 02.02.2018

J. Wolf - KATRIN - the Karlsruhe Tritium Neutrino Experiment

[e.g., Canetti, Drewes, Shaposhnikov (2013)]

In agreement with cosmological observations from small to large scales

Recent indirect hints from X-ray astronomy?

Search for keV-scale sterile v with KATRIN structure of Technology

- First measurements with KATRIN "baseline" set-up at reduced source strength
- Develope new multi-pixel SDD detector for differential energy measurement

MPIA Heidelberg, 02.02.2018

Search for keV-scale sterile v with KATRIN structure of the formation of the state of the sta

- First measurements with KATRIN "baseline" set-up at reduced source strength
- Develope new multi-pixel SDD detector for differential energy measurement
- Handling of high rates (> 10^9 cps) with 3000 4000 pixels

Conclusions

- KATRIN will be the ultimate MAC-E Filter
- many technical challenges solved
- final commissioning tests ongoing
- first tritium data: May 2018
- operation: ~ 5 years

- Alexandre

