Peering through SPHERE high contrast images

Faustine Cantalloube (MPIA)

AstroTechTalk 9th November 2018

Peering through SPHERE high contrast images

0- High contrast imaging: why, how and who

4- Extrapolation to ELT...

The 3 questions about exoplanets

- Planetary formation
- Nature of exoplanets
- **Dynamical** and **physical evolution** of exoplanets

To address this astronomers have three main pathways:

0- High contrast imaging

Why do we do HCI for exoplanets ?

- **Complementary** to other techniques: young stars, massive and distant planets
- Direct extraction of **spectrum:** atmospheric composition and structures
- Planetary system architecture: planet-planet or planet-disk interactions, follow-up...

0- High contrast imaging

Why do we get with HCI?

Three observables:

- Projected separation from the host star,
- Contrast to the host star,
- Detection limit for the data set

Why do we really get with HCI?

From the three observables:

- Planet parameters: Mass, radius, temperature, physical distance...
- **Dynamical models:** orbital parameters, migration, scaterring
- Evolutionary model: clouds, dust, atmosphere compounds...
- Statistical survey: type of companions, link to host star, environment...

-> discriminate between different planetary **formation** and **evolution** models

Raw image from VLT/SPHERE/IFS

Loads of work...

Artistic view of an exoplanetary system

The three pillars of HCI !

Today reaching contrast of 10⁻⁶ contrast at 500 mas, in infrared

Images from VLT/SPHERE-IRDIS: HR8799 in H-band (1.6μm)

0- High contrast imaging

The SPHERE instrument dedicated to HCI

Commissioned in May 2014

- One common path instrument
- Three subsystem instruments

0- High contrast imaging

The SPHERE instrument: Results

1- Dissection of a SPHERE image

Images from SPHERE

Features presented after are from: 1- Telescope itself

Subaru telescope, NAOJ, Hawaï, USA

Diameter of the pupil (7.99 m)

Images from SPHERE

Features presented after are from:

- 1- Telescope itself
- 2- Adaptive Optics (AO) residuals

1- Dissection of a SPHERE image

Images from SPHERE

Features presented after are from:

- 1- Telescope itself
- 2- AO residuals
- **3- Instrument itself**

Images from SPHERE

Features presented after are from:

- 1- Telescope itself
- 2- AO residuals
- 3- Instrument itself

4- Coronagraph concept: Apodized Lyot Coronagraph

Correction radius at 20 λ/D

1- Dissection of a SPHERE image

Fitting error Smallest spatial frequency the DM can correct (N_{act}/2 . λ /D)

Coronagraphic signature

 \odot

Poisson spot (or Arago spot) Due to diffraction by the Lyot coronagraph FPM

The contrast killers #1

1- Dissection of a SPHERE image ⊗⊗⊗

Responsible for the "**jitter**"

Diffraction by the spiders

1- Dissection of a SPHERE image

Diffraction by the spiders

1- Dissection of a SPHERE image

Can be caused by:

- Atmospheric residuals: ~ 30 mas
- Vibrations: ~ 10 mas
- Atmospheric dispersion residuals: ~ 10 mas
- Not a limitation if using a pupil plane coronagraph (e.g. APP, pupil shaped...)

The contrast killers #2

1- Dissection of a SPHERE image ⊗⊗⊗

Responsible for the "Mickey Mouse effect"

The low wind effect

1- Dissection of a SPHERE image ☺☺☺

The low wind effect

1- Dissection of a SPHERE image ເ∂ເ∂ເ∂

Mitigation:

- Software solutions: but instrument-dependent
- Active solutions (spiders heating, ventilation): too invasive
- Passive solution retained: low emissivity coating

The contrast killers #3

1- Dissection of a SPHERE image ⊗⊗⊗

Responsible for the "quasi-statics speckles"

The NCPAs

Quasi-statics speckles are the problem:

-**Too slow:** Cannot be averaged in a halo -**Too fast:** Cannot be calibrated

1- Dissection of a SPHERE image ເ∂ເ∂ເ∂

Due to optical defaults:

- Temperature changes,
- Pressure changes,
- Gravitational bent,
- Internal turbulence,

• ...

The Quasi-static speckles

Post-processing techniques are trying to get rid of those:

Basic idea:

Find a **different** behavior between

the speckles and the astrophysical signals.

→ Exploit this <u>diversity</u> to recover the signal

Today, all are based on **differential imaging**:

The contrast killers #4

Responsible for the "butterfly effect" "Wind drive halo"

2- The wind driven halo

The wind driven halo

AO Servolag / temporal bandwith error: AO lag vs turbulence speed

Jet stream layer at 12km: Wind speed from 20 to 50m/s !

unit)

Flux (arbitrary

jetstream wind forecast

Movie from SHARDDS (SPHERE-IRDIS – Broadband H): Red arrow: ground layer Black arrow: jet stream layer

See also Madurowicz et al., SPIE 2018 (GPIES)

2- The wind driven halo

Analysis of the WDH

1- Isolate the WDH contribution

Coming soon: analysis of the SHINE survey correlation w/ profiling

2- The wind driven halo

Analysis of the WDH

- 1- Isolate the WDH contribution
- 2- Derive its direction (absolute)

3- Compute its strength (relative)

$$S_{WDH} = \frac{\int (\bar{I}_{>\tau}(x, y) \times mask)}{\int (I(x, y) \times mask)} / 100.$$

4

Coming soon: analysis of the SHINE survey correlation w/ profiling

Temporal behavior

The temporal variation doesn't match exactly

--> Remains in ADI post-processing

Coming soon: spectral behavior for SDI

3- Asymmetry of the WDH

Description of the asymmetry

3- Asymmetry of the WDH

Origin of the asymmetry

٠

Interferences between correlated:

-Amplitude errors -> provoked by scintillation from upper layer -Delayed phase errors -> provoked by AO-lag (servolag error)

3- Asymmetry of the WDH

Angular separation (λ/D)

Consequences on the images

Solution: Post-processing, predictive control...

What about ELT instruments ...

Three instruments foreseen

ightarrow They all have a high contrast mode !

What about ELT instruments ...

Simulations from Silvia and Markus

METIS analytical simulations

What about ELT instruments ...

What about ELT instruments ...

The infamous "**Island effect**" due to pupil fragmentation: This is a different origin from low wind effect or atmospheric piston ! But same effect on the PSF...

METIS end-to-end simulations

Illustration N. Schwarz (UK-ATC)

Summary and conclusions

- Within the SPHERE images, you can **spot** most error terms *See Dohlen et al. SPIE 2016*
- Four of them are definitely killing the contrast See Vigan et al. SPIE 2018, Milli et al. SPIE 2018, Cantalloube et al. in prep.
- Among which the **asymmetry** of the wind driven halo, *See Cantalloube et al. 2018*
- For ELT, every instrument has an HCI mode Let's have fun !

