Leiden EXoplanet Instrument

AstroTechTalk, Heidelberg, 22-02-2019
Sebastiaan Haffert, Christoph Keller, Ignas Snellen Leiden Observatory

2009-07-31

Imaging through the atmosphere

Imaging through the atmosphere

Adaptive optics corrected

peok ralio: 311

APO1/ALC2

2009-07-31

Non-common path abberations

Temporal stability

0 min
10 min

Temporal stability

 $10 \min -0 \min$
$100 \mathrm{~min}-0 \min$

Temporal stability

 $10 \min -0 \min$$100 \mathrm{~min}-0 \mathrm{~min}$

peok ralio: 311

APO1/ALC2

$$
1
$$

$$
1
$$

Lets apply this technique

Keck/OSIRIS HR8799 b

Keck/OSIRIS HR8799 b

Remove starlight

Keck/OSIRIS HR8799 b

Remove starlight

Cross-correlate with water template

See Hoeijmakers et al 2018, Petit dit de la Roche et al. 2018

How to couple HCl with HRS

High-contrast focal plane
High-resolution spectrograph

How do we transport the light from our focal plane to the spectrograph?

The Leiden EXoplanet Instrument

LEXI

LEXI

LEXI

Evolution of LEXI XAO

William Herschel Telescope
4.2 m diameter

LEXI run June 2016

Evolution of LEXI XAO

William Herschel Telescope
4.2 m diameter

LEXI run June 2016

Palomar strategy: Downscale aperture to create an XAO system

William Herschel Telescope
1.2 m off-axis segment

LEXI run December 2017/2018

LEXI

Shack-Hartmann wavefront sensor

AO speed: 500 Hz
Number of modes: 75-80
Alpao 97-15 DM
generalised Optical Differentiation wavefront sensor

AO speed: 800 Hz Number of modes: 96

Alpao 97-15 DM

Adaptive optics on

Adaptive optics off

LEXI

How to couple HCl with HRS

High-contrast focal plane
High-resolution spectrograph

How do we transport the light from our focal plane to the spectrograph?

Fibers

Multi-mode ("seeing-limited") fiber

Single-mode ("diffraction-limited") fiber

Fibers

Multi-mode ("seeing-limited") fiber

Single-mode ("diffraction-limited") fiber

Advantaged of single-mode fibers

SMFs are diffraction-limited fibers
And spectrographs scale with angular size

Advantaged of single-mode fibers

SMF spectrographs are small!

Advantaged of single-mode fibers

Advantages of single-mode fibers

Advantages of single-mode fibers

All inputs always transform into a gaussian.

Creates very stable Line Spread Functions.

Advantages of single-mode fibers

Seeing limited image $5.2 \pm 2 \%$ SR
(a)

AO corrected image
$90.3 \pm 2 \%$ SR
(b)

We put in all the effort to make our instrument diffraction-limited!

Why convert it back to the non-diffraction limit?

Petit et al. 2016

Compact fiber-fed diffraction-limited spectrograph designs

Specifications

R of 100000
600 to 900 nm
19 fibers
Designed with SCAR Off-the-shelf parts

It is easy to design high-packing efficiencies due to the diffraction-limited spectrograph design.

LEXI spectrum of Aldebaran December 2017 at WHT

Now let's switch to an IFU instead

Filling a field with single mode fibers.

Filling a field with single mode fibers.

Filling a field with single mode fibers.

Pitch on order of 200um

Filling a field with single mode fibers.

- Micron alignment accuracy
- A MLA is a piece of bulk optic
- Fibers are not in a perfect grid.

Use a SINGLE multi-core fibre

- Excellent core to pitch ratio
- Only a single fiber.
- Dense system.
- Small size is difficult with bulk optics

In-Situ 3D Nano-printing of freeform optics

"In-Situ 3D Nano-Printing of Freeform Coupling Elements for Hybrid Photonic Integration" Dietrich et al. 2018

Multi-core single-mode fibers

Pitch of 10.5 um
1.83um MFD

Strict
requirements on microlens
alignment from SCAR.

Dietrich et al. 2018 (KIT) MLA manufactured M. Blaicher

Fiber core selection

- I added a slit because the 11×11 MCF has to many fibers.

- Due to the pitch to core ratio of this fiber I can only disperse two columns. There is no room for a third
- So we get an 2×11 area on-sky. This is roughly $\sim 0.45 \times 2.5$ arcseconds projected on-sky.

Fiber core selection

- I added a slit because the 11×11 MCF has to many fibers.
- Due to the pitch to core ratio of this fiber I can only disperse two columns. There is no room for a third
- So we get an 2×11 area on-sky. This is roughly ~ 0.45×2.5 arcseconds projected on-sky.

Latest LEXI run at WHT 2018

- Observing from $23^{\text {rd }}-31^{\text {st }}$ of December 2018
- Telescope broke down during our run. We only had 2 half nights.

Zoom in of the echellogram

Imaging through the fiber array on Regulus

A spectrum of Betelgeuse

A spectrum of Betelgeuse zoom-in

Conclusion

- LEXI has been developed over the past 3.5 years
- The new AO strategy works and delivers high quality PSFs
- Multi-core fibers with the 3D printing works very well for light injection
- With the MCF we can make compact high-resolution IFUs

