

Adaptive Optics for HARMONI

ELT at the diffraction limit

Noah Schwartz Many thanks to Jean-Francois Sauvage, Fraser Clarke, David Melotte, Benoit Neichel & the HARMONI consortium

UNIVERSITY OF

RAL Spa

Oirap

UK Astronomy Technology Centre

ONERA

Outline

- The Extremely Large Telescope
 - An Active/Adaptive Telescope
- HARMONI overview
 - First-light IFU @ELT
- HARMONI AO systems
 - LTAO, High-Contrast, SCAO
- SCAO with the ELT
 - Extended Object
 - Pupil fragmentation

Telescope Mirror Size Progression

Extremely Large Telescope

Keck Telescope

Gran Telesco Canarias

South African Large Telescope

World's largest optical near-IR Telescope

science & Technology Facilities Council UK Astronomy Technology Centre

In Numbers

- 39m diameter
 - 798 segments, Ø=1.45m
 - 133 spares
 - 1 to 3 removed each day
- Working from the visible-mid infrared
- <u>Adaptive</u> telescope
 - 5613 fast Voice Coil actuators (400Hz)
- Cost
 - over €1000 million
- First light 2024

HARMONI

cience & Technology Facilities Council JK Astronomy Technology Centre

HARMONI: High Angular Resolution Monolithic Optical and Near-infrared Integral field spectrograph

Project Overview

Countries involved

- UK-France-Spain-ESO project
- **Overall Effort**
 - ~450FTE
 - ~32M€ hardware

Duration

JK Astronomy Technology Centre

- 9 year for main design & build phase

HARMONI Science Cases

Sky Coverage at South Galactic Pole

Science & Technology Facilities Council UK Astronomy Technology Centre

HARMONI – General Overview

- First light general purpose Integral Field
 Spectrograph for ELT
 - Work horse instrument
 - Early 'highlight' science on key objects/projects
 - Low technology risks
- V-band to K-band (0.47-2.45μm) spectra coverage
- R = 3500, 7000, 18000 resolutions
- 60, 20,10 & 4mas pixel scales
- Work with NoAO/SCAO/LTAO correctior
- 204x152 pixel field of view (31000 spaxe image slicer)
 - Eight Hawaii-4 detectors
 - Four Optical CCDs

Field of View and Spaxel Size

science & Technology Facilities Council UK Astronomy Technology Centre

HARMONI, SCAO & LTAO implementation

HARMONI Architecture PBS

• HARMONI breaks down into three main areas

"Science Instrument"

- Integral Field Spectrograph
 - Pre-optics
 - IFU

Astronomy Technology Centre

- Spectrographs
- Cryostat

<u>"Wavefront Sensors"</u>

- LTAO LGS/NGS
- SCAO
- High contrast module
- Secondary Guiding

"Supporting Systems"

- Mechanical Structures
- Control Systems
- Calibration
- Software
- Data flow
- Etc etc

Laser Tomography AO

- Top-level requirements
 - Peak Performance (SR = 50% @2.2µm & Sky Coverage = 10% @SGP)
 - Drives the LGS (High-Order correction)
 - Good Performance (SR = 30% @ 2.2µm & Sky Coverage = 75% @SGP)
 - Drives the NGS (Low-Order correction)
 - Open-loop DM to correct for off-axis NGS star
- Driving criteria: number of detector pixels
 - Options to mitigate truncation under investigation
 - Potential alternative camera design identified

Astronomy Technology Centre

High-Contrast Module

High Contrast Requirements

Spectral characterization of young Jupiters around nearby stars in H & K bands at R=3000-20000, with a 10⁻⁶ contrast at 200mas. SP2 PSF (log scale) SP2 -400

-0.5

SP2 apodizer

Takes benefit from SCAO correction

HARMONI SCAO module

High-Order WFS

- Pyramid + OCAM² camera @500Hz
- 700-800nm or 700-1000nm

Low Order Loop

- LODM (13x13 actuators)
- Low order Shack-Hartmann
 - 650nm, 10nm bandwidth,1s rate
- Differential tip-tilt stabilisation
- NCPA low order compensation

SCAO active components

- Object selection mirror: 15 arcsec radius
- ADC, Derotator (K-mirror)
- Pupil adjustment loop
 - Control of shift / rotation / distortions

SCAO Wavefront Sensing

Pure turbulence compensation

- Error dominated by DM fitting
- Better CCD camera available
- Less aliasing

JK Astronomy Technology Centre

Pyramid WFS

- 4-sided prism (oscillating), re-imaging optics & camera
- Splits light into 4 regions (intensities) that are recombined to measure wavefront.

Advantages over Shack-Hartmann

- Potential for increases sensitivity
- Less aliasing
- Modulation for adjusting linear range for different condition at the cost of sensitivity
- (see later on pupil segmentation)

Disadvantages

- Variable gain
- Non-linear behaviour

Global SCAO Performances

Requirements

- Strehl Ratio @ K-band > 70%
- Medium seeing 0.65"
- Magnitude R=12

Results at PDR

K Astronomy Technology Centre

- Spec. reached with small margin
- Effects taken into account
 - Atmospheric turbulence
 - Instrument contributions
 - Island + NCPA residuals
 - Telescope contribution
 - Static contribution
 - Dynamic contribution (excl. Low-Wind Effect & Vibrations)

Good performance on faint M stars

Compatibility with HC module

Ongoing work: SCAO

Extended object performances

- Ongoing study
- OK for bright objects
- Telescope and Instrument issues
 - Islands effect
 - → Solution developed for HARMONI-SCAO
 - Low-wind Effect
 - → Ongoing study

Prototyping

JK Astronomy Technology Centre

- Cold tests of Modulator / OSM
- Verify fast tip-tilt in -20°C environment
- Verify Object selection mirror absolute precision
- Laboratory evaluation work (bench)
 - Analyse the Pyramid sensitivity
 - Investigate optimal correction vs. seeing condition
 - Demonstrate NCPA correction for high-orders

Ongoing work: Extended Object

Studied impact of object

Size, Flux, Structure

Simplified (Mini-ELT) configuration

- > 10m telescope
- Mini M4 mirror (hexagonal)

Performance vs. flux

Astronomy Technology Centre

- Little impact of object size from 0.1 to 0.4 arcsec
- Validated down to very faint flux
- Only depends on the total number of photons in the WFS
- Structured object: additional tip-tilt residual

Slide 18

Pupil Segmentation

Support Struts (Spiders)

Support struts (aka spiders)

- > Six 50 cm wide spiders (>r0 @ λ_{WFS})
- Creates discontinuities in pupil
- Obscure entire lines of sub-apertures on the SCAO Pyramid WFS

High-order wavefront control M4 (DM)

- Segmented thin shell made of 6 discontinuous petals (segments)
- Matching the 6 spiders geometry
- Common reference body

Impact of Pupil Segmentation

Low-Wind Effect

- Combination of Piston, Tip, Tilt
- Telescope induced effect
 - Created by radiative cooling of the telescope spiders
- Strength depends on the <u>height</u> of the spiders
- Vary slowly over time

Island effect

- Differential Pistons (ΔP)
- Created by the AO loop itself
 - > ΔP undergo amplification during the inversion / reconstruction
 - True for any badly seen modes such as waffle
- Strength depends on the <u>width</u> of the spiders

• Vary at loop frequency

Low Wind Effect

Assumptions

- ELT spiders will use same VLT-UT3 coating
- Rule of thumb
 - Reduction of 1/5th of residual LWE
 - Spiders height 5x larger than VLT
 - → LWE residual around 800nm PV

Impact on performance

- Impacts SCAO and LTAO
- Visible on SCAO and up to 20mas boxes

Conclusion at PDR

- Additional correction on top of spider coating
- Interaction with Island Effect

H band PSF

Slide 21

LWE pattern simulated on ELT pupil

Island Effect: Atmospheric turbulence

Differential Piston

• The atmosphere produces differential piston between the segments

 Variation are slow (seconds), driven by wind speed

JK Astronomy Technology Centre

Phase across spiders

- Large phase jumps across spider
- r0 (<20cm) << spider width (50cm)
- Loss of spatial coherence

Island Effect: Atmospheric turbulence

Island Effect

nce & Technology Facilities Council K Astronomy Technology Centr

- Differential piston
 - Not well sensed by the P-WFS
 - Additional term injected by AO loop
- $\Delta \phi_{ATM}$ and $\Delta \phi_{AO}$
 - Of the same order of magnitude
 - Difficult to disentangle
- **Requirements (HARMONI)**
- Provide a simple/robust solution
 - > Correct atmospheric differential pistons ($\Delta \phi_{ATM}$)
 - > While preventing any island effect build-up ($\Delta \phi_{AO}$)
- SCAO error budget study
 - $\geq \Delta \phi_{AO} < 70$ nm RMS of additional diff. piston (in quadrature)

Slide 23

Island Effect: Potential solutions

Using PYR-WFS only

- > PYR can measure diff. piston
 - Need small modulation
 - Careful selection of valid signal
- Large gaps of 50cm
 - Little actual signal
 - Limited capture range $\pm \lambda_{WFS}/4$
- Alternative designs
 - > 2 Pyramids at ≠λ_{WFS} (see GMT)
 - Sense at longer wavelength
 - Signal extrapolation

Reconstruction

Solution 1

- Filtering out all differential piston
- Also removes atmospheric contributions

Solution2

- Regularisation: relying on priors to smooth the DM commands
- Best correction possible (if model well tuned!)
- No complete recovery is possible without adding complementary measurements
- Work in progress!

$$egin{array}{lll} s_lpha &= Garphi + \eta \ arphi &= Rs_lpha \end{array}$$

Pairwise Edge Actuator Coupling

Correction concept

- Good performance w/o spiders & w/ continuous DM
- Cannot change spiders physical properties...
- Can we change DM behaviour?

Approach details

- Pairwise coupling of edge actuators
- Common reference body gives absolute position of the 6 DM petals
- Harder (but not impossible) for the DM to produce a segment piston

Limitations

- ➢ We loose in actuators count (162 DoF): negligible
- Complex coupling with Low-Wind Effect?

Slide 25

Edge Actuator Coupling (EAC)

General overview

- Good average performance
 - 107 nm RMS (at 0.65" seeing)
 - 35 nm RMS of island effect
- Good stability
 - Min 100 nm & max 140 nm

Edge Actuator Coupling: Seeing

- Good performance even for strong seeing
 - To be compared to microns of uncorrected islands!!!
- Same simulation conditions for reference & EAC cases
 - > Modulation between 3, $5\lambda/D$ depending on seeing
 - Between approx. 4000 & 5000 modes controlled depending on seeing
 - Scalar optical gain for all modes

JK Astronomy Technology Centre

Edge Actuator Coupling: Modulation

Impact of modulation

- Need to keep modulation low for the sensing of differential pistons
- Need to increase modulation in strong turbulence

Modulation choice: $4\lambda/D$

K Astronomy Technology Centre

- One modulation for all seeing
- Only rising the residual error from 107 to 114 nm RMS at 0.65"
- ➢ 50 nm RMS dedicated to Island Effect

EAC: Guide Star Magnitude

Minimal performance loss as a function of GS magnitude

Pure AO corrected atmosphere

K Astronomy Technology Centre

> No-binning, no loop frequency optimisation

EAC: Wind speed & Sensing wavelength

Impact of varying wind speed

- Fitting-limited performance
 - SCAO performance limited by the DM fitting error
 - Temporal errors have limited impact on performance
- EAC doesn't introduce any additional error

Impact of sensing wavelength

- Break of spatial coherence across the gap (0.5m)
- Correction in the visible more challenging than IR

Conclusions

Adaptive Optics

- Key elements & issues investigated for PDR
 - Robust Island Effect mitigation solution
- Main objective for FDR
 - Validate key AO components
 - Demonstrate complete AO loop including all AO and other components.

HARMONI

Astronomy Technology Centre

- FDR started in July 2018
 - Prototyping / design activities have begun in earnest
- First light in 2024 with ELT first light

