

Ultralightweight and Adaptive Structures A Technology for Tomorrow's Telescopes and Instruments?

Michael Böhm

Video Excellence Cluster

Adaptive Skins and Structures for the built environment of the tomorrow

construction sector accounts for:

production consumption ~ 40 % resources ~ 40 % waste ~ 35 % energy ~ 35 % emissions

UNEP, 2011; OECD, 2015; UN, Department of Economic and Social Affairs, 2017 3

CRC 1244 – Cluster Overview

Lead principal investigators

Prof. Dr.-Ing. Dr.-Ing. E.h. Dr. h.c. Werner Sobek

Lead principal investigator

Prof. Dr.-Ing. habil. Dr. h.c. Oliver Sawodny

Assistant lead principal investigator

Management

Dr.-Ing. Walter Haase

Managing director

• High stiffness necessary for comfort

• High stiffness necessary for comfort

- High stiffness necessary for comfort
- Lower stiffness remains safe, but excitations are outside of usability bounds

- High stiffness necessary for comfort
- Lower stiffness remains safe, but excitations are outside of usability bounds

- High stiffness necessary for comfort
- Lower stiffness remains safe, but excitations are outside of usability bounds
- Active structures can stay within usability bounds despite ultraleightweight design

Save up to 50% in total mass

Less Grey Energy

Total energy consumption

grey energy

Operational energy

Less Grey Energy

Operational energy

CRC 1244 – Goals

The CRC's research is focused on the potential of adaptive structures, envelopes and interior fittings The work of the CRC will lead to a transformation from high tech to low tech and from high cost to low cost,

such that the comprehensive results can be utilized for a broad variety of applications.

Classic lightweight design, (non-adaptive) concrete shell

Form determining load case: dead weight

Ultralightweight design – Adaptive (Wood-) Shell

Manipulation of tension and/or displacement fields

Increasing the life-time of (existing) bridges

Active load compensation leads to a stress range reduction

- Vertical cable facades very common:
 - Kempinski Hotel, Munich
 - Foyer, University of Bremen
 - Aviation Center Lufthansa, Frankfurt

• Pneumatic actuators

Goals:

- Reduce facade element displacements
- Damping of vibrations
- Input: u(t) Actuator position
- Output: y(t) Maximum displacement of the facade
 - But: Measurement of cable strains and accelerations (IMU)
- Desired value: $y_d(t) = \min y(t)$
- Disturbances: wind

Examples for lightweight design

- Extensive use of new and improved materials
 - CFRP
 - High-tensile steel
- Next steps:
 - lower mass
 - high artificial stiffness due to control software

CRC 1244 – First adaptive high rise building of the world Site

demonstrator platform

SmartShell platform

CRC 1244 – First adaptive high rise building of the world Plans

CRC 1244 – First adaptive high rise building of the world Status

Source: ILEK

Prototype

Actuation Strategies – parallel actuation

- Force from structural element and actuator are added: $F_a + F_p = F_e$
- Displacements are equal: $\Delta l_a = \Delta l_p = \Delta l_e$
- Used for elements with high loads due to dead load
 Columns
- Actuator with zero force at parking position
- Mechanical integration more complicated

Actuation Strategies – parallel actuation

Actuation Strategies – serial actuation

- Element force equals actuator force $F_a = F_p = F_e$
- Displacements are added: $\Delta l_a + \Delta l_p = \Delta l_e$
- Suitable especially for structures with initially small loads
 - Diagonal bracings
- Mechanical integration much simpler

Actuation Strategies – serial actuation

Actuation Strategies – integrated actuation

- Manipulation of the element stiffness
 - Nonlinear Input characteristic
- Suitable for normally prestressed elements
 - Cables, horizontal bars and plates
- Mechanical integration much simpler

Fluidic Actuator – Video Prototype

Rendering of the experimental model Source: ILEK

Beam with 1 actuator (left) and 10 actuators (right) Source: ILEK

Fluidic actuator – Video Prototype

Source: ILEK, University of Stuttgart

Fluidic actuator – Modeling and placement of pressure chambers

Results – Number of Actuators

More Actutator Placement Results for Integrated Fluidic Actuators

Actuator

Example: Two different loads

Statische Lastkompensation 88,4%

Optimaler Druck 188,9 bar

Example: Two different loads and two actuators

Statische Lastkompensation 94,6%

Optimaler Druck 138,0 bar 90,2 bar

Example: Impact of number of actuators

Modeling of Mechanical Structures

- finite element modelling
 - ceiling
 - vertical beam
 - diagonal bracing
- all connections modeled as ideal joints

linear, time-invariant mechanical system

$$\begin{aligned} \mathbf{M}\ddot{\mathbf{q}}(t) + \mathbf{D}\dot{\mathbf{q}}(t) + \mathbf{K}\mathbf{q}(t) &= \mathbf{f}(t), \qquad t > 0\\ \mathbf{q}(0) &= \mathbf{q}_0, \qquad \dot{\mathbf{q}}(0) = \mathbf{q}_1 \end{aligned}$$

modal equations of motion

$$\begin{split} \ddot{\boldsymbol{\eta}}(t) + 2\mathbf{Z}\Omega\dot{\boldsymbol{\eta}}(t) + \Omega^2\boldsymbol{\eta}(t) &= \boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{f}(t) \\ \boldsymbol{\eta}(0) &= \boldsymbol{\Phi}^{-1}\boldsymbol{q}_0, \qquad \dot{\boldsymbol{\eta}}(t) &= \boldsymbol{\Phi}^{-1}\boldsymbol{q}_1 \end{split}$$

Eigenmodes and Eigenfrequencies

 $ω_{1,2} = 0.7 \text{ Hz}$ $φ_{1,2}$ 1st order bending mode

 $\omega_3 = 3.2 \, \text{Hz}$ φ_3 torsion mode $\omega_{4,5} = 3.4 \, \text{Hz}$ $\varphi_{4,5} \, 2^{\text{nd}}$ order bending mode

System Modeling – Nonlinear Equations of Motion

System Modeling – Nonlinear Equations of Motion

Nonlinear mechanical system

 $M\ddot{q}(t) + D(q(t))\dot{q}(t) + K(q(t))q(t) = Fu(t), t > 0, q(0) = q_0, \dot{q}(0) = q_1$

Proper Orthogonal Decomposition (POD)

Proper orthogonal decomposition $A = V\Sigma W^*$	 A: data V: left eigenvectors of A, POD basis Σ: singular values matrix of A W: right eigenvectors of A 					
Nonlinear mechanical system						
$M\ddot{q}(t) + D(q(t))\dot{q}(t) + K(q(t))q(t)$	$\dot{q}(t) = Fu(t), t > 0, q(0) = q_0, \dot{q}(0) = q_1$					
POD transformation transformed state						
$\boldsymbol{q}(t) = \boldsymbol{V}_{\mathrm{c}} \boldsymbol{\zeta}(t), \boldsymbol{V}_{\mathrm{c}} \in \mathbb{R}^{n \times n_{\mathrm{c}}}$						
reduce	reduced POD basis $V_c^T M_c V_c \approx I$					
V _c columns of V						

Nonlinear reduced mechanical system

 $M_{c}\ddot{\boldsymbol{\zeta}}(t) + V_{c}^{T}D(V_{c}\boldsymbol{\zeta}(t))V_{c}\dot{\boldsymbol{\zeta}}(t) + V_{c}^{T}K(V_{c}\boldsymbol{\zeta}(t))V_{c}\boldsymbol{\zeta}(t) = F_{c}\boldsymbol{u}(t), \qquad t > 0,$ $\boldsymbol{\zeta}(0) = V_{c}^{-1}\boldsymbol{q}_{0}, \quad \dot{\boldsymbol{\zeta}}(0) = V_{c}^{-1}\boldsymbol{q}_{1}$

Nonlinear Model Order Reduction by Proper Orthogonal Decomposition

Nonlinear reduced mechanical system

$$M_{c}\ddot{\boldsymbol{\zeta}}(t) + \boldsymbol{V}_{c}^{T}\boldsymbol{D}\big(\boldsymbol{V}_{c}\boldsymbol{\zeta}(t)\big)\boldsymbol{V}_{c}\dot{\boldsymbol{\zeta}}(t) + \boldsymbol{V}_{c}^{T}\boldsymbol{K}\big(\boldsymbol{V}_{c}\boldsymbol{\zeta}(t)\big)\boldsymbol{V}_{c}\boldsymbol{\zeta}(t) = \boldsymbol{F}_{c}\boldsymbol{u}(t), \qquad t > 0,$$

$$\boldsymbol{\zeta}(0) = \boldsymbol{V}_{c}^{-1}\boldsymbol{q}_{0}, \quad \dot{\boldsymbol{\zeta}}(0) = \boldsymbol{V}_{c}^{-1}\boldsymbol{q}_{1}$$

State

$$\boldsymbol{x}(t) = \begin{bmatrix} \boldsymbol{\zeta}(t) \\ \dot{\boldsymbol{\zeta}}(t) \end{bmatrix}$$

POD transformation

$$\boldsymbol{q}(t) = \boldsymbol{V}_{\mathrm{c}} \boldsymbol{\zeta}(t), \qquad \boldsymbol{V}_{\mathrm{c}} \in \mathbb{R}^{n \times n_{\mathrm{c}}}$$

State space

Actuator Placement

Can the ability to compensate the effects of disturbances be a general property of a structure, and thus be quantified independent of a specific load?

Controllability Gramian

$$W = \int_{0}^{\infty} e^{A\tau} B B^{T} e^{A^{T}\tau} d\tau$$

Homogenizability Gramian
 $W = H^{T}H, \quad H = \left((C_{\text{hom}} K^{-1}B) (C_{\text{hom}} K^{-1}B)^{+} - I \right) C_{\text{hom}} K^{-1}E$
Deformability Gramian
 $W = H^{T}H, \quad H = \left((C_{\text{def}} K^{-1}B) (C_{\text{def}} K^{-1}B)^{+} - I \right) C_{\text{def}} K^{-1}E$

Actuator Placement – Results for optimal Controllability

Actuator Placement – Results for optimal static compensability

Claims to a Structure - Aims of Control

Stability

Property of a structure to widthstand all possible loads without loss of functionality

Usability

Property of a structure to provide unrestricted use for the designated purpose

https://www.antenne.de/nachrichten/welt/turnhalle-in-st-gallen-stuerzt-unter-schneelast-ein

http://german.people.com.cn/n3/2017/1128/c209053-9297975.html

Feedforward and Feedback Control

Centralized control strategy – linear quadratic regulator (LQR)

Decentralized control strategy – substructuring and local LQR

- Craig-Bampton Reduktion auf Randknoten
 - Randknoten Rigid-body Moden $\begin{bmatrix}
 \boldsymbol{q}_{b}^{i}(t) \\
 \boldsymbol{q}_{i}^{i}(t)
 \end{bmatrix} = \boldsymbol{T}^{i}\boldsymbol{q}_{c}^{i}(t)$
- Elimination von abhängigen Randknoten $q_1^i(t) = \Phi_1^i q_c^i(t)$
- Regelerentwurf am lokalen Modell mit lokalen Aktorei

Linear mechanical system

$$M^{i}\ddot{q}(t) + D^{i}\dot{q}(t) + K^{i}q(t) = F^{i}u^{i}(t) \quad t > 0,$$
$$q^{i}(0) = q_{0}^{i}, \qquad \dot{q}^{i}(0) = q_{1}^{i}$$

Decentralized control strategy – results

Decentralized control strategy – results

Decentralized control strategy – results

Distributed Control Approach

Data driven model for fault detection and diagnosis

High number of Sensors generate loads of data

Quantify the correlation between measurements

Model featuring structural and quantitative dependencies

 X_1

Data driven model for fault detection and diagnosis

Approach:

- 1. Generate measurement data from simulation model
- 2. Determination of significant correlation between measurements using covariance and partial mutual information matrix
- 3. Quantitative modeling of dependencies using probability graphs (Gaussian processes)
- 4. Analysis w.r.t. fault detectability (Structural Analysis)

$$I(x,y) = \frac{1}{n} \sum_{i=1}^{n} \log \left[\frac{p(x_i, y_i)}{p(x_i)p(y_i)} \right]$$

Model based decentralized fault diagnosis

Decentralized fault diagnosis

- State space system for individual module
- Unknown coupling between modules

Discrete-time state space model

$$\begin{aligned} x_{k+1} &= Ax_k + B_u u_k + B_f f_k + b_v(v_k), \qquad x_0 = \bar{x}_0 \\ y_k &= Cx_k + D_u u_k + D_f f_k + d_v(v_k) + D_\epsilon \epsilon_k \end{aligned}$$

 $\begin{array}{l} y_k \in \mathbb{R}^{l_y}: \text{Systemausgänge} \\ u_k \in \mathbb{R}^{l_u}: \text{Systemeingänge} \\ f_k \in \mathbb{R}^{l_f}: \text{Fehler} \\ v_k \in \mathbb{R}^{l_e}: \text{Störungen} \\ \epsilon_k \in \mathbb{R}^{l_e}: \text{Messrauschen} \end{array}$

Disturbances due to physical coupling for distributed modeling

$$x_{k} = \begin{bmatrix} x_{1,k} \\ x_{2,k} \end{bmatrix}, \ u_{k} = \begin{bmatrix} u_{1,k} \\ u_{2,k} \end{bmatrix}, \ y_{k} = \begin{bmatrix} y_{1,k} \\ y_{2,k} \end{bmatrix}, \ f_{k} = \begin{bmatrix} f_{1,k} \\ f_{2,k} \end{bmatrix}$$
$$b_{1,\nu}(v_{k}) = b_{1,\nu}(x_{2,k}, u_{2,k}, v_{k})$$

Goal

 Identification and elimination of disturbance impact by data based methods (PCA)

*) Andreas Gienger, Oliver Sawodny, Cristina Tarín. "Kombination von modell- und datenbasierten Methoden für die Fehlerdetektion und Diagnose in adaptiven Strukturen". Fachtagung GMA 1.30, Anif, Österreich

Model based decentralized fault diagnosis

Problem

What sensors are necessary to detect defined fault?

Approach

Identify a set of dependent sensors and actuators using data \rightarrow Redundancy:

- Optimization-based methods (LASSO-regression)
- Statistical correlation

Implications for Telescopes

- Same stiffness level with 70% mass reduction
 - Larger telescopes possible at less mass
- New building materials
- Decoupling of alignment and telescope pose