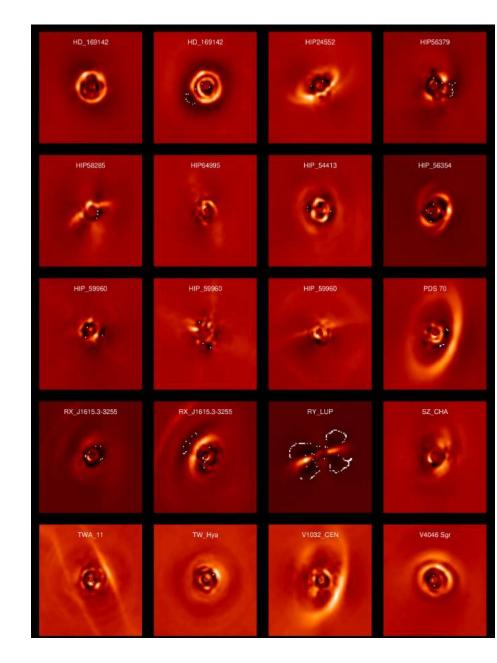
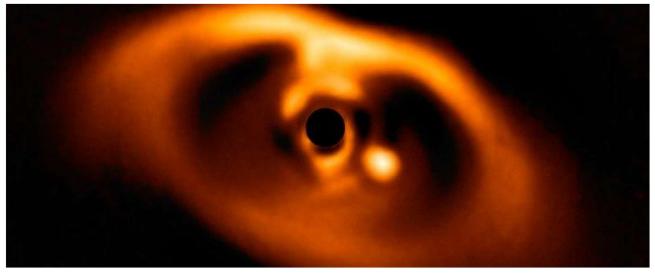

SPHERE+


CONTEXT

- 6 years of expertise with SPHERE
- ~116 Publications by the consortium (~ 200 in total)
- Good ideas of how to boost SPHERE performances
- VLT workshop June 2019 first proposal
- Identification by ESO of 3 candidates for phase A implementation
- Feb 2020: White paper
- May 2020: 2 instruments selected, not SPHERE+... but identified in the roadmap towards PCS
- Summer 2020: initiate discussions with Tech Dev. Group (PCS)
- OCT 2020: Roadmap confirmed by STC, validated by DG
- MoU 1st draft Dec 2020

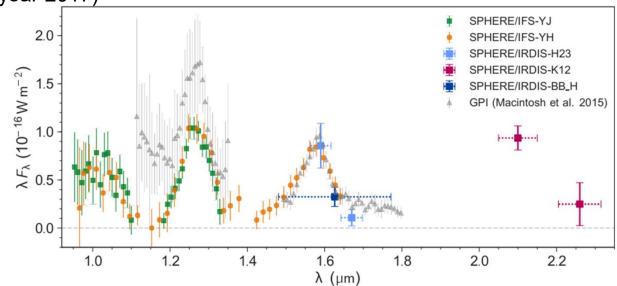
* Six years of operation & 100+ GTO publications


Transformational in the field of optical/nIR imaging of disks

Diversity of morphologies: spirals, gaps, cavities, vortices, shadows observed in scattered-light revealing a zoo of substructures in some cases to possible planets in formation... Synergies: ALMA

Lessons learned^{* Six years of operation & 100+ GTO publications}

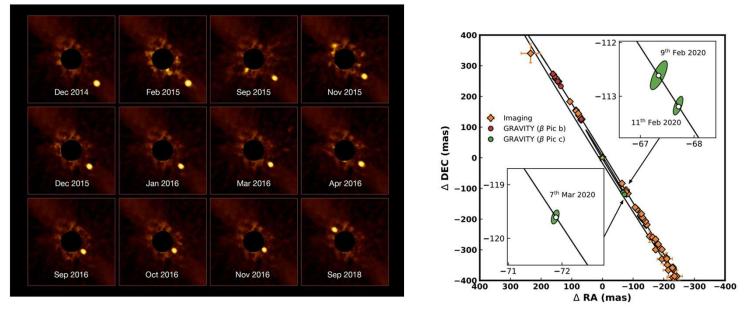
Planet(s) caught in formation First Confirmed Image of Newborn Planet Caught with ESO's VLT 2 July 2018 (ESO - PR 1821)


Insight on: giant planet formation, multiple planetary systems, planet/disk interactions, architectures & stability, physics of accretion, circumplanetary disks,

Synergies: MUSE, ALMA, Gravity...

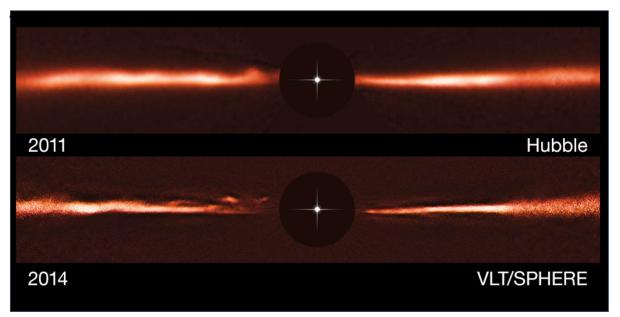
. . .

Physics of exoplanets - Atmospheres Spectral and atmospheric characterization of 51 Eridani b 19 July 2017 (Astronomy & Astrophysics Highlighted papers of the year 2017)



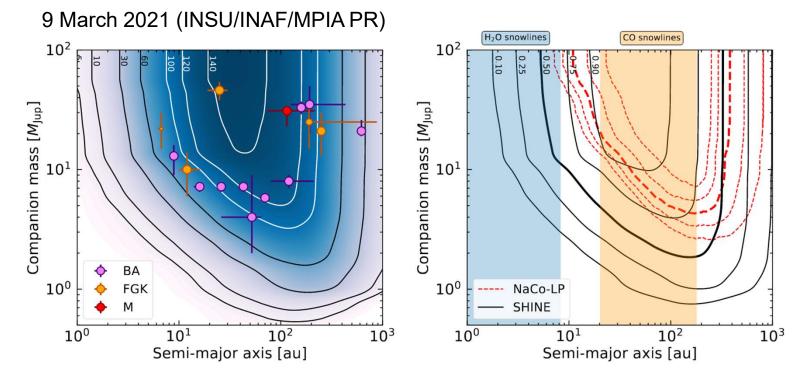
From color-magnitude diagramme (<2014) to low-resolution spectra of young Jupiters to access effective temperature, surface gravity, clouds & metallicity... Synergies: SINFONI/ERIS(+), Gravity (K-band), CRIRES+, JWST (NIRSpec, MIRI...)

* Six years of operation & 100+ GTO publications


Physics of exoplanets - Architectures/Orbits Stunning Exoplanet Time-lapse of β Pictoris b

12 November 2018 (ESO Picture of the week)

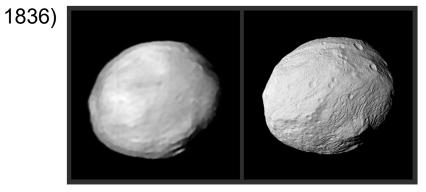
Accessing mas-astrometry for monitoring of exoplanetary orbits, (also shadows & disk features,) Synergies: Gravity (K-band)


Debris disks morphology and mineralogy Mysterious Ripples Found Racing Through Planet-forming Disc

Accessing mas-astrometry for monitoring of exoplanetary orbits, (also shadows & disk features,) Synergies: ALMA, JWST

Exoplanet Demographics

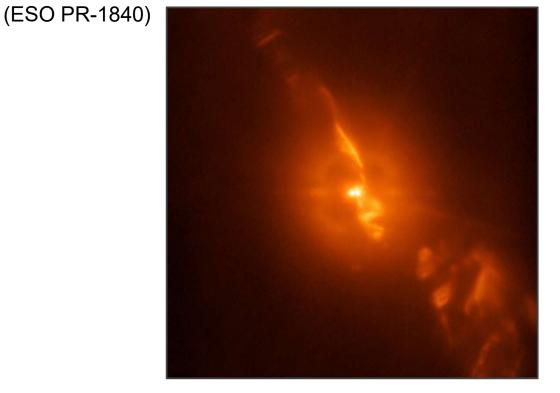
The population of young giant exoplanets below 300 au



Occurrence of planetary system hosting at least one giant planet (5 - 1000 ua, M > $1 M_{Jup}$) around young, solar-type stars = 5.7 %; Overlap of 2 populations (planets/BDs); dependency with M_{Star}

* Six years of operation & 100+ GTO publications

Solar systems, evolved stars, active galactic nuclei...


New SPHERE view of Vesta (ESO POTW-

Telescope Sees Surface of Dim Betelgeuse (ESO PR-2003, 2109)

R Aquarii peculiar stellar relationship

* Six years of operation & 100+ GTO publications

Astrophysical success thanks to:

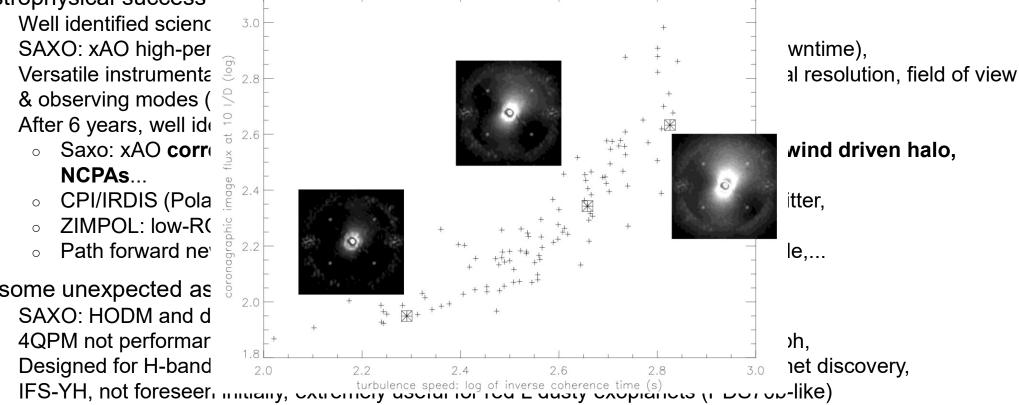
- Well identified science cases, tight specifications & trade-off analysis
- SAXO: xAO high-performances, stability, robustness in terms of operation (<3% downtime),
- Versatile instrumentation: ZIMPOL, IRDIS and IFS in terms of wavelengths, spectral resolution, field of view & observing modes (ADI, SDI, DPI, RDI),
- After 6 years, well identified limitations:
 - Saxo: xAO correction servo-lag, low-order aberrations, low-wind effects, wind driven halo, NCPAs...
 - CPI/IRDIS (Polar): Derotator re-coating (beamshift), IRDIS polarizing beamsplitter,
 - ZIMPOL: low-RON mode...
 - Path forward new solutions: PT/DPI mode, star-hopping, NCPA zelda, dark-hole,...

& some unexpected aspects...

- SAXO: HODM and dead-actuators, Kalman filtering (tip-tilt), NCPA not corrected...
- 4QPM not performant in current state, main use of the "classical" APLC coronograph,
- Designed for H-band, to detect CH4-atmospheres (DBI), but limited use for exoplanet discovery,
- IFS-YH, not foreseen initially, extremely useful for red L dusty exoplanets (PDS70b-like)

Upgrade? Do not break SPHERE, and push on the instrument strengths!

* Six years of operation & 100+ GTO publications


Astrophysical success

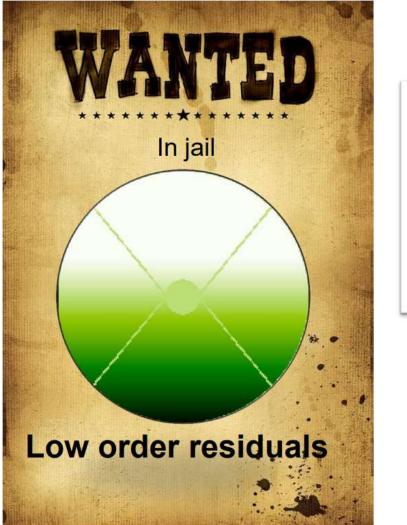
- Well identified scienc
- & observing modes (

& some unexpected as

- SAXO: HODM and d

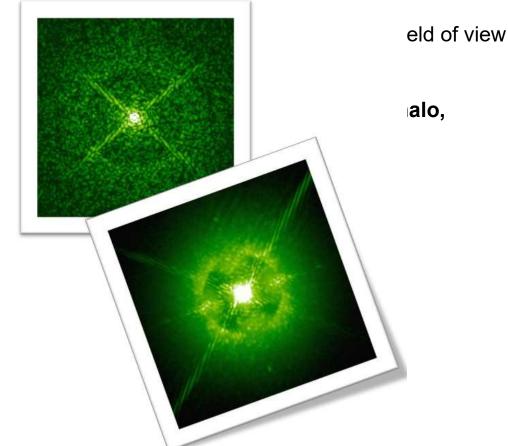
Upgrade? Do not break SPHERE, and push on the instrument strengths!

The contrast killers #1


Astrophysical

- Well identif
- SAXO: xAC
- Versatile in & observin(
- After 6 year
 - o Saxo: : NCPA:
 - CPI/IR
 - ZIMPC
 - Path fc

& some unexp


- SAXO: HO
- 4QPM not |
- Designed for
- IFS-YH, no

Upgrade? Do

1- Dissection of a SPHERE image ⊗⊗⊗

Responsible for the "jitter"

1- Dissection of a SPHERE image The contrast killers #2 888 Responsible for the Astrophysical "Mickey Mouse effect" Well identi SAXO: xA(Versatile ir ald of view & observin dead or diminished After 6 yea • Saxo: alo, **NCPA** CPI/IF 0 ZIMP(0 Path f 0 & some unexp SAXO: HC 4QPM not Designed 1 IFS-YH, nc LWE Upgrade? Do "Low wind effect".

•

•

•

٠

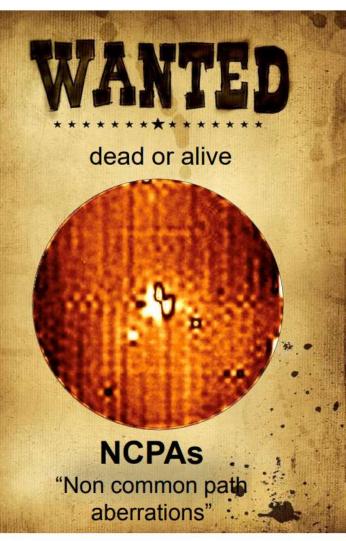
•

•

•

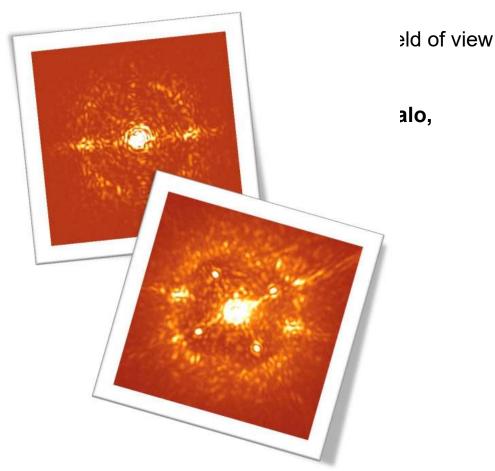
•

The contrast killers #3

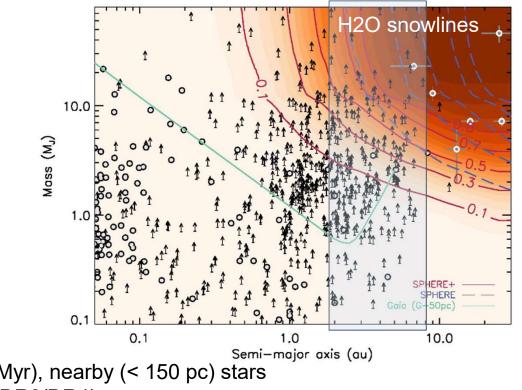

Astrophysical

- Well identi
- SAXO: xA(
- Versatile ir & observin
- After 6 yea
 - Saxo:
 NCPA
 - CPI/IF
 - ZIMP(
 - Path f

& some unex


- SAXO: HC
- 4QPM not
- Designed 1
- IFS-YH, nc

Upgrade? Do


1- Dissection of a SPHERE image ⊗⊗⊗

Responsible for the "quasi-statics speckles"

Science Cases – Main Extension

SC-Exoplanets: Demographics down to the snow line

Known exoplanets to date exoplanets.eu

Sample: Young (< 500 Myr), nearby (< 150 pc) stars Synergies: RV & Gaia (DR3/DR4)

Trade-off (SAXO+):

2nd stage AO (3kHz) for IR, RTC integrated solution, new HODM?

Sc. Req. 1: Deeper/Closer in contrast (10-5 at 100mas, 5σ) on bright (R < 9.5) I targets at H-band

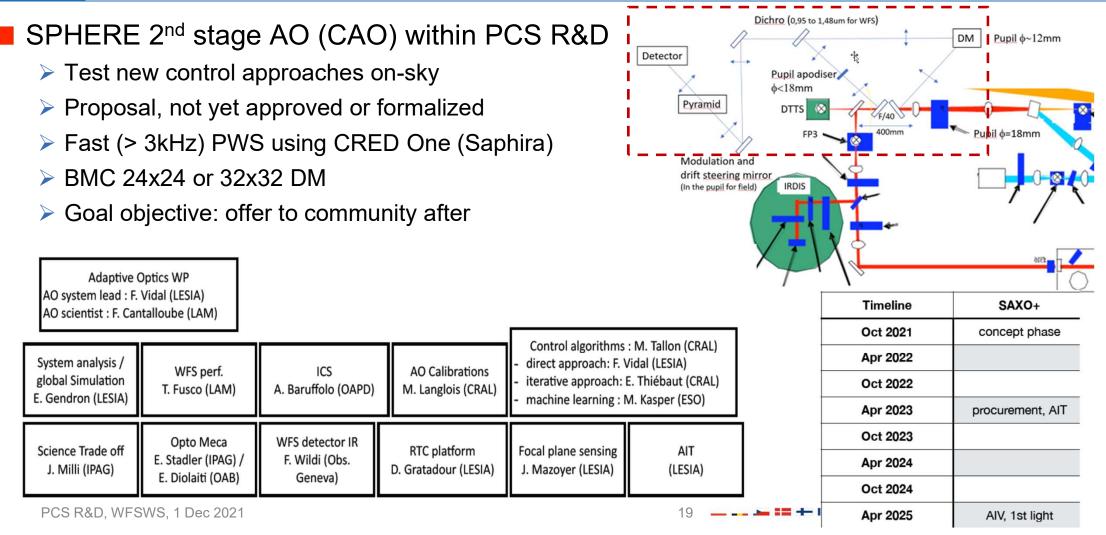
SCIENCE/TECHNIAL REQUIREMENTS

- sci.req 1: Acces the bulk of the young giant planet population down to the snow line
 - tech.req 1: increase bandwidth of AO system
- sci.req 2: Observe a large number of fainter (lower mass) stars
 - tech.req 2: operate WFS in NIR
- sci.req 3: Improve the level of characterization of exoplanetary atmospheres
 - tech.req 3: increase resolution of spectroscopic facilities

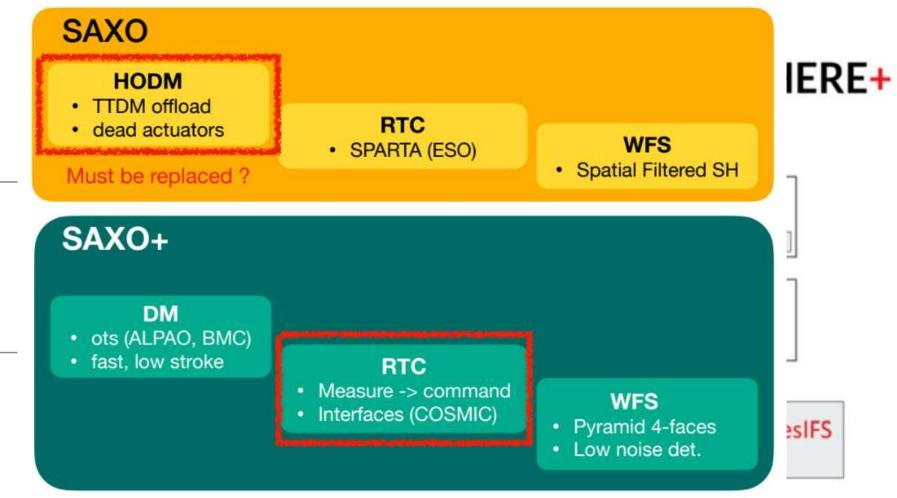
MAIN UPGRADES

- 2 main blocks:
- PCS roadmap

Visitor instrument

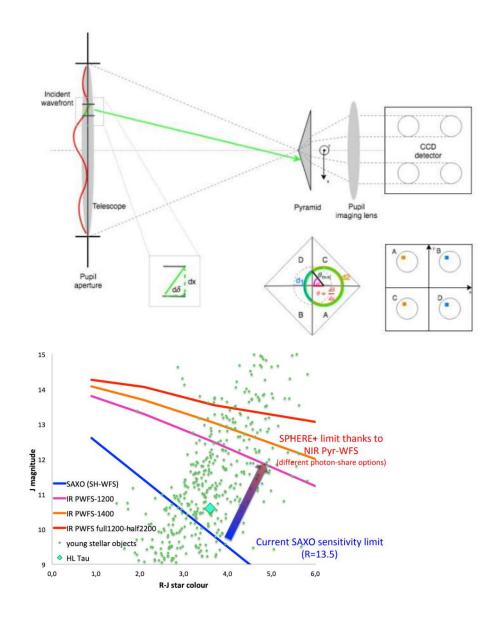

- 2nd stage AO (SAXO+)
 - Faster correction (1kHz -> 3kHz) + predictive control => contrast gain close to the star
 - IR WFS
 - => increase coverage of red targets (protoplantes / protoplanetary disks)
- Medium resolution IFS
 - Boost resolution (R=50 -> R=3000-5000)
 - Small FoV
- Smaller upgrades
 - Coronagraphy, polarimetry, HIRISE...

MoU ESO-<u>SPHERE</u>SAXO+ (still under negotiation)


- based on STC recommendation to develop, implement, and test a second stage AO system
- proposition of collaboration between the "PCS roadmap" and SPHERE+ consortium
- common interest in terms of technology (in particular the RTC) and science goal
- based on best effort, no commitment. ESO provides: support for analysis, simulations, AIV at Paranal and VLT access, develop predictive control (ML based), access to GHOST (testbench at ESO), help in the review of the project
- We provide a technological demonstrator. Need acceptance (new proposal) to open the mode if SAXO+ meets performance

+ES+

Going on-sky with MBRL? SAXO+ (2025+)



IMPLEMENTATION

WaveFront Sensor type: Current baseline: Pyramid WFS

- + uses less pixels than a SH.
- + better overall wavefront sensitivity w.r.t SH
- + less sensitive to aliasing (> perf at high flux)
- + lower noise propagation. (> limit mag at low flux)
- + becoming mature thanks to others instruments (FLAO, SCExAO, MICADO, HARMONI, METIS, ++, ...)
 - chromatic (=> double pyramid)
 - small linear regime (=> modulate the PSF)
 - cannot handle large NCPAs

Near IR => NIR WFS detector: Current baseline: First light C-RED one.

++ 320x256 pixels J, H, K detector >80% QE in H,K bands ++ well suited for PYR WFS ++ high speed 3.5kHz speed @ full frame. ++ already available camera.

? cryostats modification

=> cool down the entire WFS i.e:

(Modulation mirror) + Field stop + Pyramid + Pupil imaging lens + detector.

=> modification of the C-red cryostat (???) optical design => where to put the cold stop since no pupil is usually needed in the Pyramid WFS core...

2nd stage deformable mirror:

<u>Current baseline:</u> Boston micromachines 32x32/24x24 actuators MEMS technology

++ already available

++ high control speed and high mecanical resonnance

++ well knowns DMs

++ compact...

- -- limited stroke (=! versions...)
- -- non linear command (electrostatic shape)
- -- ...but sometimes too small aperture

SHALL I	Total Actual	Actuator Col	physical St	ulavefront	Apenurein	Pitch um	Mechanical Rep Mechanical Step	Digital Upda Digital Upda	oligital update	divite App
DM Models Multi-C-1.5	137	13	1.5	3.0	3.60	300	<20	2	100	15
Multi-3.5	140	12	3.5	7.0	4.40	400	<75	2	100	13
Multi-3.5-L	140	12	3.5	7.0	4,95	450	<75	2	100	1.
Multi-5.5	140	225	5.5		1973/02731	450	<100	2	100	2
india olo									• • •	
492-5-0.6	492	24	0.6	1.2	6.90	300	<20	60	n/a	• 4
492-S-1.0	492	24	1.0	2.0	9.20	400	<75	60	n/a	1.
492-1.5	492	24	1.5	3.0	6.90	300	<20	45	60	1
492-3.5	492	24	3.5	7.0	9.20	400	<75	45	60	1
492-5.5	492	24	5.5	11.0	10.35	450	<100	45	60	• • 2
	*****							11111	-	
648-5.5	648	28	5.5	11.0	12.15	450	<100	45	60	2
	050	24	0.6	10	0.00	200	-00	10		
Kilo-CS-0.6	952	34	0.6	1.2	9.90	300	<20	60	n/a	1
Kilo-CS-1.0	952	34	1.0	2.0	13.20	400	<75	60	n/a	1
Kilo-C-1.5	952	34	1.5	3.0	9.90	300	<20	45	60	1
Kilo-C-3.5	952	34	3.5	7.0	13.20	400	<75	45	60	1
2K-1.5	2040	50	1.5	3.0	19.60	400	<40	30	n/a	1
2K-3.5	2040	50	3.5	7.0	19.60	400	<75	30	n/a	1
3K-1.5	3063	62	1.5	3.0	18.30	300	<20	16	n/a	1
4K-3.5	4092	64	3.5	7.0	25.20	400	<75	16	n/a	1

count scospectury un

PROPOSED MPIA CONTRIBUTION

Task	Description	Responsible	Time	Units
AO Simulations	 Prerequisite: Existing COMPASS config for SPHERE+ (tbc LESIA) Introduce METIS reconstructor (Zonal VDM) Comparative case study wrt Standard performance Impact of LWE Impact of TBD 	M. Feldt H. Steuer	2022-2023	1.0 FTE
Pyramid Prism	 Review procurement specs handle contact with WZW (attempt others again if necessary) Receive prism handle characterization / verification of pyramid 	TBD	2023	50k€ 0.5FTE
Control Electronics	TBD	L. Mohr	2024-2025	1.0 FTE
Fibre coupling study for IFU	 Study of optimal design of IFU fibre link Evaluating technologies, throughput, Field of View etc New novel concepts (printed reformatters, dithered lenslets) Possibly: Full design of Sphere+ link With money, could build link 	R. J. Harris	2022-2023	R.J.H. gets 20% his time for own research. I would suggest 10% max goes on this