ANDES

ArmazoNes high Dispersion Echelle Spectrograph

& WolfganG Gaessler

Outline

- What is ANDES ?
- What will ANDES be used for ?
- What is our interest in ANDES ?
- How will ANDES look like ?
- What is our part in ANDES ?
- Who else is involved in ANDES ?
- When will ANDES be bulit ?
- Who is in charge at MPIA ?

What is ANDES ?

High resolution spectrograph

- Spectral resolution:
 R = λ/Δλ>100000
- Wavelength range: 0.35 - 0.4µm goal 0.4 - 1.8µm baseline 1.8 - 2.4µm goal
- Fiber fed, cross dispersed

 Several interchangeable observing modes from seeing limited to diffraction limited with single fiber + integral field unit (SCAO + IFU)

Which science case will be addressed by ANDES?

4 Key Scientific cases		
4.1	Exo	planets, protoplanetary discs and planet formation
4.1	.1	Exoplanet atmospheres through transit transmission spectroscopy.
4.1	.2	Exoplanet atmospheres through reflected light spectroscopy
4.1	.3	Protoplanetary disks and planet formation
4.1	.4	Additional science cases
4.2	Star	r <mark>s and Stellar populations</mark>
4.2	.1	Cool stars: low mass stars, brown dwarfs, distant giant stars
4.2	.2	Primitive stars in the Galaxy and its satellites
4.2	.3	Dynamics of stellar atmospheres and chemical compositions
4.2	.4	Additional science cases
4.2	.5	TLRs for the stellar and stellar population science cases
4.3	Gala	axy Formation and evolution and the intergalactic medium
4.3	.1	Near-Pristine gas at high redshifts
4.3	.2	Cosmic reionization
4.3	.3	3-D reconstruction of the circumgalactic medium
4.3	.4	Additional science cases
4.4	Cos	mology and Fundamental Physics
4.4	.1	Variation of fundamental constants
4.4	.2	The evolution of CMB temperature
4.4	.3	The redshift drift
4.4	.4	Additional science cases

Large overlap with scientific interest at MPIA!

MPIA/APEx key science interests in ANDES

- Transmission spectroscopy of exoplanets
 - Absorption of molecules
 - Signatures of earth-like planets
 - Is there life on other planets?
 - Tracing planet formation with CO and CO isotopes in the K-band
 - Where and how do planets form?
- Reflect light + self-luminous planets
 - Understand the dynamics of exoplanet atmospheres with CH₄ and CO
 - How does the planet spin, and how is the spin (mis-) aligned with the planetary orbit and the stellar spin?
 - What weather patterns are present? Are there seasonal changes?

Exo-Earths: search for molecules present in Earth's atmosphere ⇔H20 as a pre-requisite of life ⇔O2/O3 and CH4 as potential biomarkers -> chemical (dis-) equilibrium

molecular oxygen water

Carbon dioxide

methane

Exoplanet Atmospheres

Use high-resolution spectroscopy to disentangle the planetary and stellar spectra by comparing the combined spectrum to a star-only reference spectrum aided by the radial velocity offset (e.g. Snellen+15)

In reflected light

Proxima b: ANDES can detect planet in 7 nights at 8 sigma level

Cross-correlation function with the detection of Proxima b in O₂ in 70h (Hawker & Parry 19)

☆ In transmitted light

Trappist 1b & 1c: ANDES can detect:

- H₂0 (1.3-1.7 μm) in 2 transits
- H₂0 (0.9-1.1 μm) in 4 transits
- CO₂ in 4 transits
- O₂ in 25 transits

Weather and dynamics in gaseous exoplanets

Challenge: Jupiter has an equatorial diameter of 140 000 km

=> In general we cannot get resolved images of exoplanets

Doppler imaging to deduce cloud maps

Crossfield et al. 2014

P = 5 hr, D=140 000 km => v_rot = 24 km/s => ANDES will obtain 2D cloud maps of gaseous exoplanets for comparison with 3D global circulation models

Cosmology and fundamental constants

Compared to Bohr's 1913 model, atomic transitions (spectral lines) did show a shift in energy proportional to the square of the fine structure constant

Fine structure "constant" $\alpha \sim \frac{e^2}{h * c}$

(e: elementary charge, h: Planck constant, c: speed of light)

 α combines electro-magnetism with quantum theory and relativity (Sommerfeld 1915) \Leftrightarrow is it constant over cosmological time?

Goal: measure $\Delta \alpha / \alpha < 10^{-6}$ (current local CODATA uncertainty is 1.5×10^{-10})

Julian Berengut, UNSW, 2010

- Frontend

 to select different observation modes

• Fiber Link

 to feed the spectrograph with light and scramble the light

High Resolution Spectrographs

 4 times, each with other wavelength range

Calibration Unit

 with astrocomb for relative wavelength calibration, cathode lamps for wavelength referencing and halogen lamp for flat fielding

- Frontend
 - to select different observation modes
- Fiber Link
 - to feed the spectrograph with light and scramble the light
- High Resolution Spectrographs
 - 4 times, each with other wavelength range
- Calibration Unit
 - with astrocomb for relative wavelength calibration, cathode lamps for wavelength referencing and halogen lamp for flat fielding

Frontend

- to select different observation modes
- Fiber Link
 - to feed the spectrograph with light and scramble the light

High Resolution Spectrographs

- 4 times, each with other wavelength range
- Calibration Unit
 - with astrocomb for relative wavelength calibration, cathode lamps for wavelength referencing and halogen lamp for flat fielding

What is our part in ANDES ?

- Lead of and enhanced K-band spectrograph study during Phase B
 - + electronics in some work packages (still in negotiation which one)

What is our part in ANDES ?

Phase A design: Same as ESPRESSO just one camera and detector instead of two.

Who else in involved in ANDES?

Who else is involved in ANDES?

Principal Investigator (PI): A. Marconi

Executive Board & Institutes

- Brazil: J. Renan de Medeiros Federal Univ. of Rio Grande do Norte
- Canada: R. Doyon (new partner for Phase B) Univ. De Montreal, Herzberg Astrophysics Victoria

Denmark: J. Fynbo

Univ. of Copenhagen, Univ. Aarhus, Danish Tech. Univ.

France: I. Boisse

LAM Marseille, LAGRANGE Nice, IPAG Grenoble, IRAP/OMP Toulouse, LUPM Montpellier

Germany: K. Strassmeier

AIP Potsdam, Univ. Göttingen, Landessternwarte Heidelberg, MPIA Heidelberg, Thüringer Landesternwarte Tautenburg, Univ. Hamburg

<u>Italy:</u> A. Marconi INAF Istituto Nazionale di AstroFisica (Lead)

Poland: A. Niedzielski Nicolaus Copernicus Univ. in Toruń

Portugal: N. Santos

Inst. Astrofísica e Ciências do Espaço, CAUP Porto, Lisbon

Spain: R. Rebolo

Inst. Astrofísica de Canarias (IAC), Inst. Astrofísica de Andalucía (IAA - CSIC), Centro de Astrobiología (CSIC-INTA) Madrid

Sweden: N. Piskunov Uppsala Univ., Lunds Univ., Stockholm Univ.

Switzerland: C. Lovis

Univ. de Genève, Univ. Bern

United Kingdom: M. Haehnelt

Univ. of Cambridge, UK Astronomy Technology Centre, Heriot-Watt Univ.

USA: T. Bergin (new partner for Phase B) Univ. of Michigan

When will ANDES be built?

- Total estimated cost of baseline design is ~35 MEUR, + 550 FTEs
- ~125 GTO nights which will be used for Consortium science programs

- Schedule
- Phase A: 2016-2018 Completed!
- Phase B (PDR): 2022-2023
- Phase C (FDR): 2024-2025
- Integration (PAE): 2026-2029
- Commissioning & PAC: 2029/2030

Who is in charge at MPIA?

- Local Project Pl
 - Laura Kreidberg
- Local Project Lead
 - Wolfgang Brandner
- Local Project Scientist
 - Paul Mollier
- Local Project Manager
 - Wolfgang Gaessler

Fundamental Physics: variation of the fundamental constants

