

MII

Loredana Gastaldo

Kirchhoff Institute for Physics Heidelberg University

UNIVERSITÄT HEIDELBERG ZUKUNIT SEIT 1386

NII

Outline

Metallic magnetic calorimeters

 Thermodynamical properties
 Readout
 Fabrication

 MMC applications and performance x-ray
 Molecular fragments
 Neutrino mass – ECHo

Conclusions

Low Temperature Calorimeters

Near equilibrium detectors

Energy deposition induces increase of temperature

- Very small volume
- Working temperature below 100 mK small specific heat small thermal noise
- Very sensitive temperature sensors

Low Temperature Calorimeters

Near equilibrium detectors

Energy deposition induces increase of temperature

- Very small volume
- Working temperature below 100 mK small specific heat small thermal noise
- Very sensitive temperature sensors

Metallic Magnetic Calorimeters

Paramagnetic temperature sensor

Dilute alloy Au:Er or Ag:Er (Er concentration: a few hundred ppm)

A.Fleischmann, C. Enss and G. M. Seidel, Topics in Applied Physics **99** (2005) 63

A.Fleischmann et al., AIP Conf. Proc. **1185** (2009) 571

Metallic Magnetic Calorimeters

Paramagnetic temperature sensor

Dilute alloy Au:Er or Ag:Er (Er concentration: a few hundred ppm)

A.Fleischmann, C. Enss and G. M. Seidel, Topics in Applied Physics **99** (2005) 63

A.Fleischmann et al., AIP Conf. Proc. **1185** (2009) 571

Metallic Magnetic Calorimeters

A.Fleischmann, C. Enss and G. M. Seidel, Topics in Applied Physics **99** (2005) 63

A.Fleischmann et al., AIP Conf. Proc. **1185** (2009) 571

Paramagnetic temperature sensor

Dilute alloy Au:Er or Ag:Er (Er concentration: a few hundred ppm)

Performance

Operation over a large temperature range → operation of large arrays

Large dynamic range

 \rightarrow no saturation of the signal

Design defined decay constant

→ thermal link optimized for detector heat capacity at operating temperature

Fast risetime

 \rightarrow Reduction un-resolved pile-up

Extremely good energy resolution → identification of small structures

Excellent linearity

ightarrow precise definition of the energy scale

Detector geometries

- planar paramagnetic sensor •
- superconducting coil ٠
- transformed coupled to a dc SQUID •

Persistent current

Reliable injection of a persistent current in the superconducting coil:

Achievable critical current density: ~ 10 MA/cm²

MMC readout

Two-stage dc-SQUID readout with flux-locked loop low noise

small power dissipation on detector SQUID chip (voltage bias 1st stage)

In house produced SQUID array

MMC readout

MMC fabrication

40 m² Cleanroom class 100 at Kirchhoff Institute for Physics

Wet bench Chemistry bench Maskless aligner UHV sputtering system Dry etching system

- Flexibility in design and fabrication
- Reliable processes for thin films
- Production of MMC array and superconducting electronics

MMC fabrication

ECHo-100k wafer

Fabrication steps				
#	Layer	Material	Thickness	Deposition technique
1	Pick-up coils, SQUID lines (layer 1)	Nb	250 nm	Sputtering + etching
2	Isolation	Nb_2O_5	-	Anodisation
3	Isolation	SiO_2	175 nm	$\operatorname{Sputtering} + \operatorname{lift-off}$
4	Isolation	SiO_2	175 nm	Sputtering + lift-off
5	Heaters	AuPd	$150 \mathrm{nm}$	Sputtering + lift-off
6	SQUID lines (layer 2)	Nb	600 nm	Sputtering + lift-off
7	Sensor	AgEr	$480~\mathrm{nm}$	Sputtering + lift-off
8	Thermalisation	Au	300 nm	Sputtering + lift-off
9	Stems	Au	100 nm	Sputtering
10	Absorber - 1st layer	Au	$3 \ \mu m$	Electroplating + lift-off
11	¹⁶³ Ho host material	Ag	100 nm	Sputtering
12	¹⁶³ Ho implantation	¹⁶³ Ho	-	Ion-implantation
13	¹⁶³ Ho host material	Ag	100 nm	Sputtering + lift-off
14	Absorber - 2nd layer	Au	$3 \ \mu m$	Sputtering + lift-off

F. Mantegazzini, PhD Dissertation, Heidelberg University, 2021

Microcalorimeter arrays for X-rays spectroscopy - maXs

maXs-20/30/100:

- 8×8 pixels for photons up to 20/30/100 keV
- with $\Delta E_{FWHM} = 2/5/30 \text{ eV}$
- 32 two-stage dc-SQUIDs

8 mm

maXs-30

Absorber size: $500\times500\times30~\mu m^3$

Search for an evidence for solar axions

Low background and high energy resolution (low threshold) x-ray detectors

The IAXO Collaboration, Journal of High Energy Physics 2021 137 (2021)

detector module

 $E_{\rm FWHM}$ / eV A -9.7 8.2 7.8 7.8 13.5 B - 7.2 8.5 7.6 8.4 7.6 - 12.0 7.6 С-7.4 6.5 6.3 14.2 **D** - 8.2 6.9 8.1 6.9 14.2 - 10.5 E - 6.7 6.9 6.9 - 9.0 F - 7.4 7.8 - 7.5 **G** - 6.2 6.6 7.3 7.0 7.0 H - 6. 7.0 6.8 - 6.0 2 3 5 6 8

⁵⁵Fe calibration source Stopping power @10 keV ~100%

- Homogeneous performance over the array
- Stable operation over 1 month

D. Unger et al., *JINST* **16** (2021) P06006, <u>arXiv:2010.15348</u> [physics.ins-det]

maXs-30 with ²⁴¹Am + ²³³U external sources

Co-added 20 channels, several weeks

T. Sikorsky et al., Phys. Rev. Lett. 125 (2020) 142503

maXs-30 with ²⁴¹Am + ²³³U external sources

maXs-30 with ²⁴¹Am + ²³³U external sources

non-linearity as expected from thermodynamics!

Energy calibration

- Polynomial function 2nd to 4th order
- Stable over long measuring time

From maXs-30 to maXs-100

Highly charged ion spectroscopy

Absorber volume can be adjusted for the particles to be detected

Sensor volume is optimized to match the heat capacity of the absorber at the working temperature

maXs-100

Large area/Lamb shift U⁹¹⁺

1) The Hydra principle

Pixel identification via rise-time of the detector signal

Porst et al., AIP Conf. Proc. 1185 (2009) 599

- 1) The Hydra principle
- 2) Segmented sensor

- 1) The Hydra principle
- 2) Segmented sensor

- 1) The Hydra principle
- 2) Segmented sensor

- 1) The Hydra principle
- 2) Segmented sensor

- 1) The Hydra principle
- 2) Segmented sensor

Т

32 readout channels for 4000 pixels - MOCCA

- 1) The Hydra principle
- 2) Segmented sensor

- 64×64 pixels
- ~100 eV (FWHM)
- 32×32 temperature sensors
- Read out by 16+16 SQUIDs

32 readout channels for 4000 pixels - MOCCA

- 1) The Hydra principle
- 2) Segmented sensor

45 mm 88 eV FWHM

- 64×64 pixels
- ~100 eV (FWHM)
- 32×32 temperature sensors
- Read out by 16+16 SQUIDs

MMCs for the ECHo experiment

ECHo uses large arrays of MMCs with enclosed ¹⁶³Ho

 $^{163}_{67}\text{Ho} \rightarrow ^{163}_{66}\text{Dy}^* + \nu_e$

 $^{163}_{66}$ Dy^{*} \rightarrow $^{163}_{66}$ Dy + E_{C}

Fraction of events in the last eV ~10⁻¹²

Implantation square: 150 μm x 150 μm Second absorber: 165 μm x 165 μm First absorber: 180 μm x 180 μm

M. Braß and M. W. Haverkort, New J. Phys. 22 (2020) 093018

ECHo-1k array

64 pixels can be loaded with ¹⁶³Ho

- + 2 temperature pixels
- + 2 detectors for diagnostics

Design performance: $\Delta E_{FWHM} \simeq 5 \text{ eV}$ $\tau_r \simeq 90 \text{ ns}$ (single channel readout)

F. Mantegazzini et al., NIM A, Vol. 1030, 2022, 166406

ECHo-1k array

64 pixels can be loaded with ¹⁶³Ho

- + 2 temperature pixels
- + 2 detectors for diagnostics

Design performance: $\Delta E_{FWHM} \approx 5 \text{ eV}$ $\tau_r \approx 90 \text{ ns}$ (single channel readout)

✓ presence of non-implanted chips for in-situ background determination

F. Mantegazzini et al., NIM A, Vol. 1030, 2022, 166406

ECHo-1k readout

ECHo-1k chip-Au implanted @RISIKO

- High purity ¹⁶³Ho source \rightarrow activity per pixel $a \approx 1$ Bq
- 4 Front-end chips each with 8 dc-SQUIDs for parallel readout

F. Mantegazzini et al., *JINST* **16** (2021) P08003

Connector for field and heat currents

U 1.0

ECHo-1k chip and 4 dc-SQUID chips

Connectors for connection to the amplifier SQUIDs

ECHo-1k data – Live!

Data reduction

Data reduction

Data reduction

Data reduction - structure

- The acquisition of all channels is synchronized
- For each acquired trace, the trigger time is saved
- $\rightarrow \Delta T_{\rm Ch}$ Time difference to previous trace in a channel
- $\rightarrow \Delta T$ Time difference to previous trace in any channel

Example

On-going:

• determination of efficiency for filters

R. Hammann et al., Eur. Phys. J. C (2021) 81:963

Combining many files

Quality checks

level filter
 Monitor fraction of removed events over time for a pixel
 level filter

Monitor $\chi^2\, distribution$

Energy calibration

new calibration with ⁵⁵Fe with a ¹⁶³Ho high resolution spectrum

 \rightarrow Alignment test

Energy resolution

Extract "Pseudo-energy resolution" for each single histogram

 \rightarrow define acceptance range

Conclusions

metallic magnetic calorimeters

- are versatile low temperature detectors
- high resolution for all kinds of particles
- wide range of energies
- impressive resolving power

micro-farbrication works

- detector arrays reliably fabricated
- designed performance is reached
- reproducibility of performance

multiplexing

• demonstrated principles

Conclusions

metallic magnetic calorimeters

- are versatile low temperature detectors
- high resolution for all kinds of particles
- wide range of energies
- impressive resolving power

micro-farbrication works

- detector arrays reliably fabricated
- designed performance is reached
- reproducibility of performance

multiplexing

• demonstrated principles

Thank you for the attention!