Navigation


Changes between Initial Version and Version 1 of OldPresentations2023S1


Ignore:
Timestamp:
21 Sep 2023, 21:40:39 (20 months ago)
Author:
Vianak Naranjo
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • OldPresentations2023S1

    v1 v1  
     1||'''Date''' ||'''Speaker    ''' ||'''Topic''' ||
     2|| '''20.02.2023''' || '''Simon Gross (Macquarie University, Sydney)''' || '''Integrated Photonics for Astronomical Interferometry[[BR]][[BR]]'''Applying  photonic technologies to astronomical instrumentation is a  growing  field. High contrast imaging using interferometry especially  benefits  from the inherent stability and robustness provided by  integrated   photonics. This talk will provide an overview of the photonics for   interferometry we have been working on at Macquarie University.[[BR]][[BR]][[BR]]The   GLINT instrument at the Subaru telescope is a multi-baseline nulling   interferometer based on 3D integrated photonics operating  in the  H-band. The talk will present the instrument concept and will  introduce  the planned upgrades in the coming years to add new  capabilities and  vastly improve its performance. Moreover, the talk will  touch on recent  progress on the L-band beam combiner  for SCIFY (Self-Calibrated  Interferometry For exoplanet spectroscopy),  an instrument planned for  the VLTI.[[BR]][[BR]][[BR]]Presentation: English[[BR]][[BR]]Slides: English[[BR]][[BR]]Questions: German, English ||
     3|| 27.02.2023 || -- || -- ||
     4|| 06.03.2023 || -- || -- ||
     5|| 13.06.2023 || -- || -- ||
     6|| 20.03.2023 || Fachbeirat || -- ||
     7|| 27.03.2023 || -- || '''--''' ||
     8|| 03.04.2023 || -- || -- ||
     9|| 10.04.2023 || Holiday || -- ||
     10|| '''17.04.2023''' || '''Jiao He, Tushar Suhasaria''' || '''An overview on the experimental setups in the Origins of Life Lab[[BR]][[BR]]'''Over  the last two decades, laboratory astrochemistry has played an immense  role in elucidating how some of the complex organic molecules (COMs) are  formed from simple molecular ice in the coldest regions of dense  molecular cloud. Chemistry in the solid state can be driven by either  the non-energetic processing (atom bombardment) or energetic processing  (irradiation with ions, electrons and protons). Organic molecules  continue to evolve as interstellar material transit from molecular  clouds to planetary systems. A deeper understanding of the physical and  chemical processes involved in the formation and evolution of prebiotic  COMs may provide valuable insights into the origins of life. To this  end, we have two setups in the origins of life lab that work in  ultra-high vacuum regime and at cryogenic temperatures to mimic the  space conditions.[[BR]][[BR]][[BR]]In the first setup, we focus on the  formation of molecules by atom addition reactions in the solid state. We  use quadrupole mass spectrometer and Infrared spectroscopy to monitor  changes in the ice. In the second setup, we can look at the energetic  processing of single or multicomponent ices by energetic electrons or UV  photons. In addition to IR spectroscopy, we will also employ a tunable  ns-IR laser to first desorb and then a ns-UV laser to ionize molecules  produced in the ice mixture. The formed ions will then be guided to a  very high resolution Orbitrap mass spectrometer for in-situ detection.[[BR]][[BR]][[BR]]The work of the Origins of Life laboratory will provide crucial data to the astrochemical and astrophysical community.[[BR]][[BR]][[BR]]Presentation: English & German[[BR]][[BR]][https://svn.mpia.de/trac/gulli/att/raw-attachment/wiki/WikiStart/23apr17_ATT_He_Suhasaria.pdf Slides: English][[BR]][[BR]]Questions: German, English ||
     11|| '''24.04.2023''' || '''Walter Seifert (LSW)''' || '''Instrumentation projects at the Landessternwarte (LSW)[[BR]][[BR]]'''The  LSW is involved in several instrumentation projects for medium and  large telescopes. During the talk these will be presented and, of  course, our contributions will be discussed in particular.[[BR]][[BR]][[BR]]Details  of the technical solutions or approaches for the instruments will be  described, as well as the current status of the projects. Besides CUBES  (ESO VLT), MOSAIC (ESO ELT), CARMENES PLUS (CAHA 3.5), ANDES K-band  spectrograph (with MPIA, ESO ELT) and 2ES (!LaSilla 2.2) the focus will be on the 4MOST high resolution spectrograph for the ESO VISTA telescope.[[BR]][[BR]][[BR]]Presentation: German[[BR]][[BR]][https://svn.mpia.de/trac/gulli/att/raw-attachment/wiki/WikiStart/ATT_20230424_Instrumentierung_LSW.pdf Slides: English][[BR]][[BR]]Questions: German, English ||
     12|| 01.05.2023 || Holiday || -- ||
     13|| '''08.05.2023''' || '''Jalo Nousiainen[[BR]](LUT-Universität, Lappeenranta, Finnland)''' || '''Model-based reinforcement learning and inverse problems in extreme       adaptive optics control[[BR]][[BR]]'''The  control of eXtreme Adaptive Optics         (XAO) systems is crucial for  the direct imaging of potentially         habitable exoplanets on  ground-based telescopes. However,         current XAO control laws leave  strong residuals, particularly at         small angular separations  from host stars where most habitable         exoplanets are located. To  address this issue, our recent work         has focused on two  approaches: Model-based Reinforcement         Learning (MBRL) and  spatio-temporal Gaussian process (ST-GP)         regression.[[BR]][[BR]]MBRL  is a data-driven approach that         learns control strategies from  system feedback and promises to         effectively manage factors that  can hamper XAO performance, such         as temporal delay, calibration  errors, photon noise, and optical         gains. I will present recent  results from the GHOST test bench         at ESO and discuss our future  goals.[[BR]][[BR]]ST-GP regression, however, allows for         the  theoretical examination of predictive control strategies.          Factors that affect predictive controllers' performance include          the wavefront sensor type, measurement noise level, AO system          geometry (aliasing, actuator spacing), and atmospheric          conditions (e.g., seeing, wind speed). Through ST-GP regression,          we can explore the theoretical limits of predictive control          under different conditions and geometries.[[BR]][[BR]]Overall, our work aims  to advance XAO control methods to enable       high-contrast imaging of  potentially habitable exoplanets using       ground-based telescopes.[[BR]][[BR]][[BR]]Presentation: English[[BR]][[BR]]Slides: English[[BR]][[BR]]Questions: German, English ||
     14|| 15.05.2023 || -- || -- ||
     15|| 22.05.2023 || Institutsbesprechung || -- ||
     16|| 29.05.2023 || Holiday || -- ||
     17|| 05.06.2023 || -- || -- ||
     18|| '''12.06.2023''' || '''Hans Jürgen Kärcher (Consulting Engineer, Karben)''' || '''Optical Configurations for Extreme Large Telescopes - Viewpoint of a Structural Engineer[[BR]][[BR]]'''The  optical layout of large telescopes is defined by the science cases and  related science instruments for which the telescope is designated.  Design drivers for the optomechanical system of the telescope are the  requested wavelength range, magnification, and field of view. The  increasing diversity of the science cases leads to increasing  expectations for size and quality of its main optical components.[[BR]][[BR]][[BR]]The  lecture gives an overview on optical configurations of large telescopes  for different wavelength ranges and throughput – optical, radio,  infrared, solar etc., and describes the related challenges for their  structural, and mechanical design.[[BR]][[BR]]'''[[BR]]'''Presentation: German[[BR]][[BR]]Slides: English[[BR]][[BR]]Questions: German, English ||
     19|| '''19.06.2023''' || '''Hugo Coppejans & Horst Steuer''' || '''Real Time Computing in Adaptive Optics Systems'''[[BR]][[BR]][[BR]]Adaptive          Optics is used in astronomy to correct for distortions of the          incoming light into         a telescope. Adaptive         optics  system generally consist of three core components: deformable          mirrors, wavefront sensors and real time computers (RTC).         In  this talk we will focus on the RTC       in particular         on the  one we are currently working on         for         METIS.[[BR]][[BR]][[BR]]What        is       the task of the RTC in the control loop and what can the  RTC       actually       'see'? What are the main data products and  which computational       steps       does it have to do to produce  them? What is a mode? How fast does       the       RTC have to be and  what does 'Real Time' mean? How did we get the       RTC       to be  fast enough and what are the main differences between a       central        processing unit (CPU) and a graphics processing unit (GPU)?[[BR]][[BR]][[BR]]We       will       address these and other questions in a graphic way.[[BR]][[BR]][[BR]]Presentation: German, English[[BR]][[BR]]Slides: German, English[[BR]][[BR]]Questions: German, English ||