Navigation


Changes between Version 585 and Version 586 of AstroTechTalk


Ignore:
Timestamp:
21 Sep 2023, 22:17:15 (8 months ago)
Author:
Vianak Naranjo
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • AstroTechTalk

    v585 v586  
    1616'''Location: Hybrid -> MPIA Hoersaal + Video-Link'''
    1717
    18 '''Link:  ''' https://eu01web.zoom.us/j/65407509821?pwd=cEdxMHZ1RkVGV1JTYXpCc3N3cG4vdz09
     18'''Link: '''https://eu02web.zoom-x.de/j/62627094341?pwd=SzlxYVJPNFgrZEdKVVpHS2xNbENTdz09
    1919
    2020'''Outline:'''
     
    2727
    2828||'''Date''' ||'''Speaker    ''' ||'''Topic''' ||
    29 || '''20.02.2023''' || '''Simon Gross (Macquarie University, Sydney)''' || '''Integrated Photonics for Astronomical Interferometry[[BR]][[BR]]'''Applying photonic technologies to astronomical instrumentation is a  growing field. High contrast imaging using interferometry especially  benefits from the inherent stability and robustness provided by  integrated  photonics. This talk will provide an overview of the photonics for  interferometry we have been working on at Macquarie University. [[BR]][[BR]]The  GLINT instrument at the Subaru telescope is a multi-baseline nulling  interferometer based on 3D integrated photonics operating  in the H-band. The talk will present the instrument concept and will  introduce the planned upgrades in the coming years to add new  capabilities and vastly improve its performance. Moreover, the talk will  touch on recent progress on the L-band beam combiner  for SCIFY (Self-Calibrated Interferometry For exoplanet spectroscopy),  an instrument planned for the VLTI.[[BR]][[BR]]Presentation: English[[BR]]Slides: English[[BR]]Questions: German, English ||
    30 || 27.02.2023 || -- || -- ||
    31 || 06.03.2023 || -- || -- ||
    32 || 13.06.2023 || -- || -- ||
    33 || 20.03.2023 || Fachbeirat || -- ||
    34 || 27.03.2023 || -- || '''--''' ||
    35 || 03.04.2023 || -- || -- ||
    36 || 10.04.2023 || Holiday || -- ||
    37 || '''17.04.2023''' || '''Jiao He, Tushar Suhasaria''' || '''An overview on the experimental setups in the Origins of Life Lab[[BR]][[BR]]'''Over the last two decades, laboratory astrochemistry has played an immense role in elucidating how some of the complex organic molecules (COMs) are formed from simple molecular ice in the coldest regions of dense molecular cloud. Chemistry in the solid state can be driven by either the non-energetic processing (atom bombardment) or energetic processing (irradiation with ions, electrons and protons). Organic molecules continue to evolve as interstellar material transit from molecular clouds to planetary systems. A deeper understanding of the physical and chemical processes involved in the formation and evolution of prebiotic COMs may provide valuable insights into the origins of life. To this end, we have two setups in the origins of life lab that work in ultra-high vacuum regime and at cryogenic temperatures to mimic the space conditions. [[BR]][[BR]]In the first setup, we focus on the formation of molecules by atom addition reactions in the solid state. We use quadrupole mass spectrometer and Infrared spectroscopy to monitor changes in the ice. In the second setup, we can look at the energetic processing of single or multicomponent ices by energetic electrons or UV photons. In addition to IR spectroscopy, we will also employ a tunable ns-IR laser to first desorb and then a ns-UV laser to ionize molecules produced in the ice mixture. The formed ions will then be guided to a very high resolution Orbitrap mass spectrometer for in-situ detection. [[BR]][[BR]]The work of the Origins of Life laboratory will provide crucial data to the astrochemical and astrophysical community.[[BR]][[BR]]Presentation: English & German[[BR]][https://svn.mpia.de/trac/gulli/att/raw-attachment/wiki/WikiStart/23apr17_ATT_He_Suhasaria.pdf Slides: English][[BR]]Questions: German, English ||
    38 || '''24.04.2023''' || '''Walter Seifert (LSW)''' || '''Instrumentation projects at the Landessternwarte (LSW)[[BR]][[BR]]'''The LSW is involved in several instrumentation projects for medium and large telescopes. During the talk these will be presented and, of course, our contributions will be discussed in particular.[[BR]][[BR]]Details of the technical solutions or approaches for the instruments will be described, as well as the current status of the projects. Besides CUBES (ESO VLT), MOSAIC (ESO ELT), CARMENES PLUS (CAHA 3.5), ANDES K-band spectrograph (with MPIA, ESO ELT) and 2ES (!LaSilla 2.2) the focus will be on the 4MOST high resolution spectrograph for the ESO VISTA telescope.[[BR]][[BR]]Presentation: German[[BR]][https://svn.mpia.de/trac/gulli/att/raw-attachment/wiki/WikiStart/ATT_20230424_Instrumentierung_LSW.pdf Slides: English][[BR]]Questions: German, English ||
    39 || 01.05.2023 || Holiday || -- ||
    40 || '''08.05.2023''' || '''Jalo Nousiainen[[BR]](LUT-Universität, Lappeenranta, Finnland)''' || '''Model-based reinforcement learning and inverse problems in extreme       adaptive optics control[[BR]][[BR]]'''The control of eXtreme Adaptive Optics         (XAO) systems is crucial for the direct imaging of potentially         habitable exoplanets on ground-based telescopes. However,         current XAO control laws leave strong residuals, particularly at         small angular separations from host stars where most habitable         exoplanets are located. To address this issue, our recent work         has focused on two approaches: Model-based Reinforcement         Learning (MBRL) and spatio-temporal Gaussian process (ST-GP)         regression.[[BR]]MBRL is a data-driven approach that         learns control strategies from system feedback and promises to         effectively manage factors that can hamper XAO performance, such         as temporal delay, calibration errors, photon noise, and optical         gains. I will present recent results from the GHOST test bench         at ESO and discuss our future goals.[[BR]]ST-GP regression, however, allows for         the theoretical examination of predictive control strategies.         Factors that affect predictive controllers' performance include         the wavefront sensor type, measurement noise level, AO system         geometry (aliasing, actuator spacing), and atmospheric         conditions (e.g., seeing, wind speed). Through ST-GP regression,         we can explore the theoretical limits of predictive control         under different conditions and geometries.[[BR]]Overall, our work aims to advance XAO control methods to enable       high-contrast imaging of potentially habitable exoplanets using       ground-based telescopes.[[BR]][[BR]]Presentation: English[[BR]]Slides: English[[BR]]Questions: German, English ||
    41 || 15.05.2023 || -- || -- ||
    42 || 22.05.2023 || Institutsbesprechung || -- ||
    43 || 29.05.2023 || Holiday || -- ||
    44 || 05.06.2023 || -- || -- ||
    45 || '''12.06.2023''' || '''Hans Jürgen Kärcher (Consulting Engineer, Karben)''' || '''Optical Configurations for Extreme Large Telescopes - Viewpoint of a Structural Engineer[[BR]][[BR]]'''The optical layout of large telescopes is defined by the science cases and related science instruments for which the telescope is designated. Design drivers for the optomechanical system of the telescope are the requested wavelength range, magnification, and field of view. The increasing diversity of the science cases leads to increasing expectations for size and quality of its main optical components.[[BR]][[BR]]The lecture gives an overview on optical configurations of large telescopes for different wavelength ranges and throughput – optical, radio, infrared, solar etc., and describes the related challenges for their structural, and mechanical design.[[BR]]'''[[BR]]'''Presentation: German[[BR]]Slides: English[[BR]]Questions: German, English ||
    46 || '''19.06.2023''' || '''Hugo Coppejans & Horst Steuer''' || '''Real Time Computing in Adaptive Optics Systems'''[[BR]][[BR]]Adaptive         Optics is used in astronomy to correct for distortions of the         incoming light into         a telescope. Adaptive         optics system generally consist of three core components: deformable         mirrors, wavefront sensors and real time computers (RTC).         In this talk we will focus on the RTC       in particular         on the one we are currently working on         for         METIS.[[BR]][[BR]]What       is       the task of the RTC in the control loop and what can the RTC       actually       'see'? What are the main data products and which computational       steps       does it have to do to produce them? What is a mode? How fast does       the       RTC have to be and what does 'Real Time' mean? How did we get the       RTC       to be fast enough and what are the main differences between a       central       processing unit (CPU) and a graphics processing unit (GPU)?[[BR]][[BR]]We       will       address these and other questions in a graphic way.[[BR]][[BR]]Presentation: German, English[[BR]]Slides: German, English[[BR]]Questions: German, English ||
    47 || 26.06.2023 || || ||
    48 || 03.07.2023 || -- || -- ||
    49 || 10.07.2023 || || ||
    50 || 17.07.2023 || -- || -- ||
    51 || 24.07.2023 || || ||
     29|| '''25.09.2023''' || '''Hugo Coppejans & Horst Steuer''' || '''Real Time Computing in Adaptive Optics Systems - Part 2'''[[BR]][[BR]]Adaptive          Optics is used in astronomy to correct for distortions of the          incoming light into         a telescope. Adaptive         optics  system generally consist of three core components: deformable          mirrors, wavefront sensors and real time computers (RTC).         In  this talk we will focus on the RTC       in particular         on the  one we are currently working on         for         METIS.[[BR]]What       is       the task of the RTC in the control loop and what can  the RTC       actually       'see'? What are the main data products and  which computational       steps       does it have to do to produce  them? What is a mode? How fast does       the       RTC have to be and  what does 'Real Time' mean? How did we get the       RTC       to be  fast enough and what are the main differences between a       central        processing unit (CPU) and a graphics processing unit (GPU)?[[BR]][[BR]]We       will       address these and other questions in a graphic way.[[BR]][[BR]]Presentation: English[[BR]]Slides: English[[BR]]Questions: German, English ||
     30|| 02.10.2023 || -- || -- ||
     31|| 09.10.2023 || Institutional Review || ||
     32|| 16.10.2023 || -- || -- ||
     33|| 23.10.2023 || || ||
     34|| 27.10.2023 || -- || '''--''' ||
     35|| 06.11.2023 || || ||
     36|| 13.11.2023 || -- || -- ||
     37|| 20.11.2023 || || ||
     38|| 27.11.2023 || -- || -- ||
     39|| 04.12.2023 || || ||
     40|| 11.12.2023 || -- || -- ||
     41|| 18.12.2023 || || ||
     42|| 25.12.2023 || Holiday || Christmas ||
    5243
    5344'''Preview:'''