Navigation


Changes between Version 269 and Version 270 of WikiStart


Ignore:
Timestamp:
24 Oct 2016, 09:16:10 (8 years ago)
Author:
Ralph Hofferbert
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • WikiStart

    v269 v270  
    3131|| '''14.10.2016''' || '''Claudia Reinlein (Fraunhofer IOF, Jena)''' || '''Aktive und Adaptive Optik am Fraunhofer IOF'''[[BR]][[BR]]Aktive und Adaptive Optik wird vermehrt in erdgebundenen Teleskopen eingesetzt und für Weltraumteleskope diskutiert. Technologisch werden an solche Systeme völlig unterschiedliche Anforderungen gestellt. Während für Weltraumteleskope fast ausschließlich Aktive Optik diskutiert wird, werden für erdgebundene System Aktive und Adaptive Optiken eingesetzt.[[BR]][[BR]]Im Vortrag sollen auf die technologischen Besonderheiten und den Stand der Technik "Deformierbare Spiegel / AO Systeme" eingegangen werden. Der Fokus liegt auf der Vorstellung von Entwicklungsprojekten aus dem Fraunhofer IOF (Jena).[[BR]][[BR]]Im Rahmen eines ESA-Projektes wird ein Testbreadboard entwickelt, um die Ausgleichsmöglichkeiten statischer Aberrationen mit Hilfe eines aktiven Spiegels in Weltraumteleskopen nachzuweisen. Zukünftig sollen Teleskope mit Primärspiegeln von 4-16 m bei der Suche nach extraterrestrischem Leben eingesetzt werden. Zum Ausgleich von herstellungs- und montagebedingten Aberrationen entwickeln und untersuchen wir einen aktiven Spiegel mit "set-and-forget" Charakteristika.[[BR]][[BR]]Für das European Extremely Large Telescope (E-ELT) wird eine Technologieentwicklungen für eine extreme AO (X-AO) durchgeführt. Hierbei führen wir eine technologische Vorrecherche (Design) für einen deformierbaren Spiegel mit 11000 Aktoren durch, über die ebenfalls berichtet werden soll.[[BR]][[BR]]Die Vorkompensation von Aberrationen ist für die Laserkommunikation zwischen erdgebundenen Bodenstationen und geostationären Satelliten ein Mittel, um die Intensität am Empfänger zu vergrößern und störende Speckles zu unterdrücken. Im Vortrag wird die Echtzeit AO des Fraunhofer IOF und deren Kompensationseffizienz in Abhängigkeit vom Vorhaltewinkel vorgestellt.[[BR]][[BR]]Vortrag: Deutsch                  [[BR]][https://svn.mpia.de/trac/gulli/att/raw-attachment/wiki/AlteVortraege2016S2/2016-10-14_AAO-Fraunhofer.pdf Präsentation: Englisch][[BR]]Fragen: Deutsch, Englisch ||
    3232|| '''21.10.2016 '''[[BR]]'''[[span(style=color: #FF0000, HdA-Auditorium!!)]]''' || '''Eike Guenther (TLS, Tautenburg)''' || '''Instrumentierungsprojekte der [[BR]]Thüringer Landessternwarte Tautenburg'''[[BR]][[BR]]Die  Thüringer Landessternwarte (TLS) betreibt das 2m Alfred-Jensch-Teleskop sowie das LOFAR Radio-Teleskop in Tautenburg und ist in zahlreichen Instrumentierungsprojekten an den unterschiedlichsten Teleskopen beteiligt. Dieser Vortrag soll eine Gesamt-Übersicht der Instrumentierungen der TLS geben. [[BR]][[BR]]Obwohl das Alfred-Jensch-Teleskop vor mehr als 50 Jahren gebaut wurde, wird es regelmäßig mit neuen Instrumenten bestückt. Derzeit aktiv sind ein hoch-auflösender Echelle-Spektrograph für die Exo-Planeten-Forschung, sowie ein Faint-Object-Spektrograph mit niedriger Auflösung. Zusätzlich ist eine bildgebende CCD-Kamera im Primärfokus installiert. Aufbauend auf der Erfahrung mit diesen Instrumenten ist die TLS an einigen internationalen Instrumentierungsprojekten beteiligt. Das erste war GROND, eine Mehrkanal-Kamera für das ESO/MPG 2.2m Teleskop auf dem La Silla. Andere Projekte waren der HERMES Spektrograph für das Mercator Teleskop in La Palma sowie die beiden Kalibrationseinheiten für CARMENES. Derzeit noch laufend ist der Upgrade von CRIRES  nach CRIRES+, einem hochauflösenden NIR-Spektrographen für das VLT. Die Mehrkanal-Kamera GTI wurde speziell entwickelt für Nachfolge-Beobachtungen von Exo-Planet-Kandidaten, welche mit den zukünftigen Weltraum-Missionen TESS- und PLATO zu beobachten sein werden. [[BR]][[BR]]Die TLS beherbergt ebenfalls eine LOFAR-Station. LOFAR ist das  "Low-Frequency Array", ein Instrument für die Radio-Astronomie im Wellenlängebereich zwischen 1.2 und etwa 10m. Gebaut wurde es von ASTRON,  dem Niederländischen Institut für Radio-Astronomie, zusammen mit seinen internationalen Partnern. Ungefähr 40 Stationen gibt es in den Niederlanden, weitere in Großbritannien, Frankreich, Schweden und Deutschland.[[BR]][[BR]]Vortrag: Deutsch                  [[BR]][https://svn.mpia.de/trac/gulli/att/raw-attachment/wiki/AlteVortraege2016S2/2016-10-21_TLS.pdf Präsentation: Englisch][[BR]]Fragen: Deutsch, Englisch ||
    33 || 28.10.2016 || Santiago Barboza || Der MICADO De-Rotator Pruefstand ||
     33|| '''28.10.2016''' || '''Santiago Barboza''' || '''Der MICADO De-Rotator [[BR]]und die Prototyp-Entwicklung am MPIA'''[[BR]][[BR]]Die  Multi-AO Imaging Camera for       Deep Observations (MICADO), eines der First-Light-Instrumente für das 39m European       Extremely Large  Telescope (E-ELT), ist ausgelegt und optimiert für den gemeinsamen Betrieb mit dem Multi-Conjugate Adaptive Optics (MCAO) Modul MAORY, welches mit Laser-Leitsternen arbeiten wird.       Das so kombinierte MICADO-MAORY Instrument wird beugungsbegrenzte Bildgebung in einem Gesichtsfeld einer Breite von 53arcsec erlauben. [[BR]]     [[BR]]     Das Kernstück des derzeitigen Konzepts des MICADO Instruments ist ein Kryostaten mit 2.1m Durchmesser und 2m Höhe, welcher Teil der Gesamtstruktur ist. Zusammen mit dem darüber montierten Wellenfront-Sensor (WFS) besitzt dieser eine Masse von rund 4000kg. Über einen zentralen Ringflansch ist der Kryostat direkt an einen großen Derotator mit 2.5m Durchmesser angebunden.  Dieser komplette Aufbau wird durch eine Hexapoden-Struktur über einer der Nasmyth-Plattformen des E-ELT gehalten, direkt unterhalb der optischen Bank von MAORY.[[BR]]     [[BR]]      MPIA ist verantwortlich für die Auslegung und den Bau des MICADO Derotators, der als Schlüsselkomponente den Kryostat exakt um seine optische Achse drehen muss, um auf diese Weise die Feld-Rotation durch die Alt-Azimut-Bauweise des E-ELT präzise auszugleichen. Dabei wird eine differentielle Winkel-Genauigkeit von weniger als 10arcsec verlangt. Der Derotator besteht aus einem hochpräzisen Lager, mehreren Zahnrädern, Motoren, Positionssensoren und sehr steifen mechanischen Schnittstellen zu den angrenzenden Baugruppen. Die Lagerung erfolgt über ein speziell angefertigtes, hoch-präzises 4-Punkt-Kontakt-Kugellager.  [[BR]]     [[BR]]      Um das Design des Derotators in einer sehr frühen Phase des Projekts zu überprüfen, wird derzeit ein Prototyp mit einem halb so großen Standard-Lager von 1.2m Durchmesser aufgebaut. Die Test-Kampagne startet in diesen Tagen und soll zeigen, ob das vorgeschlagene Konzept in der Lage ist, die sehr anspruchsvollen Anforderungen hinsichtlich Positionsgenauigkeit und anderer Leistungsdaten, welche vom MICADO Instrument gefordert werden, zu erfüllen.  [[BR]][[BR]]Vortrag: Deutsch                  [[BR]][https://svn.mpia.de/trac/gulli/att/raw-attachment/wiki/AlteVortraege2016S2/2016-10-28_MICADODerot.pdf Präsentation: Englisch][[BR]]Fragen: Deutsch, Englisch ||
    3434|| '''04.11.2016''' || '''Stefan Hippler''' || '''Adaptive Optiken fuer VLT und E-ELT[[BR]]'''[[BR]]Dieser Vortrag wird auf sehr grundsätzliche Weise das Funktionsprinzip und den Nutzen von Adaptiver Optik (AO)  im astronomischen Umfeld beleuchten. Dazu wird Stefan Hippler in einem ersten Teil ausführlich und phänomenologisch auf die Bildentstehung beim Beobachten durch optische Turbulenzen eingehen. Ein kurzer historischer Abriss und die Vorstellung der damit jeweils erreichten Ergebnisse schliessen diese Einführung ab.[[BR]][[BR]]Im anschliessenden, zweiten Teil werden dann speziell die AO Systeme der großen ESO Observatorien auf dem Paranal (VLT) und dem Armazones (E-ELT) unter die Lupe genommen. Am Beispiel von NACO und CIAO werden die bereits im Einsatz befindlichen Instrumente im Detail beschrieben, um dann einen Ausblick auf die derzeit in der Designphase befindlichen Weiterentwicklungen für das neue Flaggschiff der ESO bis Mitte der 2020er Jahre zu erlauben. [[BR]][[BR]]Vortrag: Deutsch                  [[BR]][https://svn.mpia.de/trac/gulli/att/raw-attachment/wiki/AlteVortraege2016S2/2016-11-04_AOOverview.pdf Präsentation: Englisch][[BR]]Fragen: Deutsch, Englisch ||
    3535|| 11.11.2016 || Vianak Naranjo || Charakterisierung von Infrarot Detektoren - Was ist das? ||